Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-28T03:00:40.720Z Has data issue: false hasContentIssue false

Hydrogenated Si–O–C nanoparticles: Synthesis, structure, and thermodynamic stability

Published online by Cambridge University Press:  17 December 2014

Amir H. Tavakoli
Affiliation:
Peter A Rock Thermochemistry Laboratory and NEAT ORU, University of California, Davis, California 95616, USA
Matthew M. Armentrout
Affiliation:
Peter A Rock Thermochemistry Laboratory and NEAT ORU, University of California, Davis, California 95616, USA
Sabyasachi Sen
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, Davis, California 95616, USA
Alexandra Navrotsky*
Affiliation:
Peter A Rock Thermochemistry Laboratory and NEAT ORU, University of California, Davis, California 95616, USA; and Department of Chemical Engineering and Materials Science, University of California, Davis, California 95616, USA
*
a)Address all correspondence to this author. e-mail: anavrotsky@ucdavis.edu
Get access

Abstract

In the present work, for the first time, the inorganic Si-based materials lacking preexisting mixed bonds (O–Si–C, silicon in tetrahedral coordination bonded to both carbon and oxygen) have been successfully used as starting materials in a laser evaporation/condensation system for making hydrogenated silicon oxycarbide (Si–O–C–H) nanoparticles containing mixed bonds. The obtained materials are characterized by spectroscopic, microscopic, and calorimetric measurements. Thermodynamically stable 5–10 nm amorphous Si–O–C–H particles with a complex structure containing a combination of pure and mixed Si-based tetrahedral units (SiOiC4−i; i = 0–4), and a considerable amount of Si–OH and C–H bonds have been synthesized. The nanoparticles possess high surface areas (428–467 m2/g), suggesting potential use in functionalities requiring high surface to volume ratios. In addition, making thermodynamically stable Si–O–C–H ceramics using a pathway different from the polymer route raises the likelihood of formation of similar carbon containing compounds in the planetary accretion and the Earth's interior.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kroke, E., Li, Y.L., Konetschny, C., Lecomte, E., Fasel, C., and Riedel, R.: Silazane derived ceramics and related materials. Mater. Sci. Eng., R 26, 97 (2000).CrossRefGoogle Scholar
Colombo, P., Mera, G., Riedel, R., and Soraru, G.D.: Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics. J. Am. Ceram. Soc. 93, 1805 (2010).CrossRefGoogle Scholar
Mera, G., Navrotsky, A., Sen, S., Kleebe, H.J., and Riedel, R.: Polymer-derived SiCN and SiOC ceramics - Structure and energetics at the nanoscale. J. Mater. Chem. A 1, 3826 (2013).Google Scholar
Renlund, G.M., Prochazka, S., and Doremus, R.H.: Silicon oxycarbide glasses. 2. Structure and properties. J. Mater. Res. 6, 2723 (1991).Google Scholar
Saha, A., Raj, R., and Williamson, D.L.: A model for the nanodomains in polymer-derived SiCO. J. Am. Ceram. Soc. 89, 2188 (2006).Google Scholar
Widgeon, S.J., Sen, S., Mera, G., Ionescu, E., Riedel, R., and Navrotsky, A.: Si-29 and C-13 solid-state NMR spectroscopic study of nanometer-scale structure and mass fractal characteristics of amorphous polymer derived silicon oxycarbide ceramics. Chem. Mater. 22, 6221 (2010).CrossRefGoogle Scholar
Dixmier, J., Bellissent, R., Bahloul, D., and Goursat, P.: Neutron-diffraction study of the amorphous phase-structure in silicon carbonitride ceramics obtained by pyrolysis of a polyvinylsilazane. J. Eur. Ceram. Soc. 13, 293 (1994).Google Scholar
Seitz, J., Bill, J., Egger, N., and Aldinger, F.: Structural investigations of Si/C/N-ceramics from polysilazane precursors by nuclear magnetic resonance. J. Eur. Ceram. Soc. 16, 885 (1996).Google Scholar
Haug, J., Lamparter, P., Weinmann, M., and Aldinger, F.: Diffraction study on the atomic structure and phase separation of amorphous ceramics in the Si-(B)-C-N system. 1. Si-C-N ceramics. Chem. Mater. 16, 72 (2004).Google Scholar
Yang, C.S., Oh, K.S., Ryu, J.Y., Kim, D.C., Jing, S.Y., Choi, C.K., Lee, H.J., Um, S.H., and Chang, H.Y.: A study on the formation and characteristics of the Si–O–C–H composite thin films with low dielectric constant for advanced semiconductor devices. Thin Solid Films 390, 113 (2001).Google Scholar
Lee, H.J., Oh, K.S., and Choi, C.K.: The mechanical properties of the SiOC(–H) composite thin films with a low dielectric constant. Surf. Coat. Technol. 17, 296 (2003).Google Scholar
Wanga, C.B., Gotob, T., Tub, R., and Zhang, L.M.: Preparation of silicon oxycarbide films by laser ablation of SiO/3C–SiC multicomponent targets. Appl. Surf. Sci. 257, 1703 (2010).Google Scholar
Gong, Z., Wang, E.G., Xu, G.C., and Chen, Y.: Influence of deposition condition and hydrogen on amorphous-to-polycrystalline SiCN films. Thin Solid Films 348, 114 (1999).Google Scholar
Park, N., Kim, S.H., and Sung, G.Y.: Amorphous silicon carbon nitride films grown by the pulsed laser deposition of a SiC-Si3N4 mixed target. ETRI J. 26, 257 (2004).Google Scholar
Gonsalves, K.E., Strutt, P.R., Xiao, T.D., and Klemens, P.G.: Synthesis of Si(C, N) nanoparticles by rapid laser polycondensation/crosslinking reactions of an organosilazane precursor. J. Mater. Sci. 27, 3231 (1992).Google Scholar
Kortobi, Y.El., d’Espinose de la Caillerie, J., and Legrand, A.: Local composition of silicon oxycarbides obtained by laser spray pyrolysis. Chem. Mater. 9, 632 (1997).Google Scholar
Varga, T., Navrotsky, A., Moats, J.L., Morcos, R.M., Poli, F., Muller, K., Sahay, A., and Raj, R.: Thermodynamically stable SixOyCz polymer-like amorphous ceramics. J. Am. Ceram. Soc. 90, 3213 (2007).Google Scholar
Morcos, R.M., Navrotsky, A., Varga, T., Blum, Y., Ahn, D., Poli, F., Muller, K., and Raj, R.: Energetics of SixOyCz polymer-derived ceramics prepared under varying conditions. J. Am. Ceram. Soc. 91, 2969 (2008).Google Scholar
Karakuscu, A., Ponzoni, A., Aravind, P.R., Sberveglieri, G., and Soraru, G.D.: Gas sensing behavior of mesoporous SiOC glasses. J. Am. Ceram. Soc. 96, 2366 (2013).CrossRefGoogle Scholar
Eilers, H. and Tissue, B.M.: Synthesis of nanophase ZnO, EU2O3, and ZrO2 by gas-phase condensation with CW-CO2 laser-heating. Mater. Lett. 24, 261 (1995).CrossRefGoogle Scholar
McHale, J.M., Kowach, G.R., Navrotsky, A., and DiSalvo, F.J.: Thermochemistry of metal nitrides in the Ca/Zn/N system. Chem. -Eur. J. 2, 1514 (1996).Google Scholar
Navrotsky, A.: Progress and new directions in high-temperature calorimetry. Phys. Chem. Miner. 2, 89 (1977).Google Scholar
Navrotsky, A.: Progress and new directions in high-temperature calorimetry. Phys. Chem. Miner. 24, 222 (1997).Google Scholar
Navrotsky, A.: Thermochemical studies of nitrides and oxynitrides by oxidative oxide melt calorimetry. J. Alloys Compd. 321, 300 (2001).Google Scholar
Tavakoli, A.H., Armentrout, M.M., Narisawa, M., Sen, S., and Navrotsky, A.: White Si-O-C ceramic: Structure and thermodynamic stability. J. Am. Ceram. Soc., in press (DOI:10.1111/jace.13233).CrossRefGoogle Scholar
Liang, J.J., Topor, L., Navrotsky, A., and Mitomo, M.: Silicon nitride: Enthalpy of formation of the alpha- and beta-polymorphs and the effect of C and O impurities. J. Mater. Res. 14, 1959 (1999).Google Scholar
Liang, J.J., Navrotsky, A., Leppert, V.J., Paskowitz, M.J., Risbud, S.H., Ludwig, T., Seifert, H.J., Aldinger, F., and Mitomo, M.: Thermochemistry of Si6-ZAlzOzN8-Z (Z = 0 to 3.6) materials. J. Mater. Res. 14, 4630 (1999).Google Scholar
Zhang, Y.H., Navrotsky, A., and Sekine, T.: Energetics of cubic Si3N4 . J. Mater. Res. 21, 41 (2006).Google Scholar
Sen, S., Widgeon, S.J., Navrotsky, A., Mera, G., Tavakoli, A., Ionescu, E., and Riedel, R.: Carbon substitution for oxygen in silicates in planetary interiors. Proc. Natl. Acad. Sci. 110, 15904 (2013).Google Scholar
Bale, C., Chartrand, P., Degterov, S.A., Eriksson, G., Hack, K., Ben Mahfoud, R., Melancon, J., Pelton, A.D., and Petersen, S.: Factsage thermochemical software and databases. In Calphad-Computer Coupling of Phase Diagrams and Thermochemistry, Vol. 26. (Computer Coupling of Phase Diagrams and Thermochemistry, 2002); pp. 189228.Google Scholar
Robie, R.A. and Hemingway, B.S.: Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures. In U. S. Geological Survey Bulletin 2131. (United States Government Printing Office, Washington, DC, 1995).Google Scholar
Silverstein, R.M., Bassler, G.C., and Morrill, T.C.: Spectrometric Identification of Organic Compounds, 5th ed. (Wiley, New York, NY, 1991).Google Scholar
Widgeon, S., Mera, G., Gao, Y., Sen, S., Navrotsky, A., and Riedel, R.: Effect of precursor on speciation and nanostructure of SiBCN polymer-derived ceramics. J. Am. Ceram. Soc. 96, 1651 (2013).Google Scholar
Bréquel, H., Parmentier, J., Walter, S., Badheka, R., Trimmel, G., Masse, S., Latournerie, J., Dempsey, P., Turquat, C., Desmartin-Chomel, A., Le Neindre-Prum, L., Jayasooriya, U.A., Hourlier, D., Kleebe, H-J., Sorarù, G.D., Enzo, S., and Babonneau, F.: Systematic structural characterization of the high-temperature behavior of nearly stoichiometric silicon oxycarbide glasses. Chem. Mater. 16, 2585 (2004).Google Scholar
Tavakoli, A.H., Campostrini, R., Gervais, C., Babonneau, F., Bill, J., Soraru, G.D., and Navrotsky, A.: Energetics and structure of polymer-derived Si-(B-)O-C glasses: Effect of the boron content and pyrolysis temperature. J. Am. Ceram. Soc. 97, 303 (2014).Google Scholar
Costa, G.C.C., McDonough, J.K., Gogotsi, Y., and Navrotsky, A.: Thermochemistry of onion like carbons. Carbon 69, 490 (2014).Google Scholar
Gustavo, G.C.C., Shenderova, O., Mochalin, V., Gogotsi, Y., and Navrotsky, A.: Thermochemistry of nanodiamond terminated by oxygen containing functional groups. Carbon 80, 544 (2014).Google Scholar