Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T15:56:31.308Z Has data issue: false hasContentIssue false

Hydrothermal synthesis of perovskite and pyrochlore powders of potassium tantalate

Published online by Cambridge University Press:  31 January 2011

Gregory K. L. Goh*
Affiliation:
Materials Department and Materials Research Laboratory, University of California—Santa Barbara, Santa Barbara, California 93106
Sossina M. Haile
Affiliation:
Materials Science Department 138-78, California Institute of Technology, 1200 California Boulevard, Pasadena, California 91125
Carlos G. Levi
Affiliation:
Materials Department and Materials Research Laboratory, University of California—Santa Barbara, Santa Barbara, California 93106
Fred F. Lange
Affiliation:
Materials Department and Materials Research Laboratory, University of California—Santa Barbara, Santa Barbara, California 93106
*
a)Address all correspondence to this author.Present address : Institute of Materials Research and Engineering, 3 Research Link, Singapore 117602, Repubic of Singapore g-goh@imre.org.sg
Get access

Abstract

Potassium tantalate powders were hydrothermally synthesized at 100 to 200 °C in 4 to 15 M aqueous KOH solutions. A defect pyrochlore, Kta2O5(OH). nH2O (n ≈ 1.4), was obtained at 4 M KOH, but at 7–12 M KOH, this pyrochlore was gradually replaced by a defect perovskite as the stable phase. At 15 M KOH, there was no intermediate pyrochlore, only a defect perovskite, 0.85Ta0.92O2.43(OH)0.57 0.15H2O. Synthesis at higher KOH concentrations led to greater incorporation of protons in the perovskite structures. The potassium vacancies required for charge compensation of incorporated protons could accommodate water molecules in the perovskite structure.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Vendik, O.G., Hollmann, E.K., Kozyrev, A.B., and Prudan, A.M., J. Superconductivity 12, 325 (1999).CrossRefGoogle Scholar
2.Christen, H.M., Boatner, L.A., Budai, J.D., Chisholm, M.F., Gea, L.A., Marrero, P.J., and Norton, D.P., Appl. Phys. Lett. 68, 1488 (1996).CrossRefGoogle Scholar
3.Goh, G.K.L., Levi, C.G., and Lange, F.F., J. Mater. Res. (in press).Google Scholar
4.Chien, A.T., Speck, J.S., Lange, F.F., Daykin, A.C., and Levi, C.G., J. Mater. Res. 10, 1784 (1995).CrossRefGoogle Scholar
5.Chien, A.T., Speck, J.S., and Lange, F.F., J. Mater. Res. 12, 1176 (1997).CrossRefGoogle Scholar
6.Reisman, A., Holtzberg, F., Berkenblit, M., and Berry, M., J. Am. Chem. Soc. 78, 4514 (1956).CrossRefGoogle Scholar
7.Hirano, S., Yogo, T., Kikuta, K., Morishita, T., and Ito, Y., J. Am. Ceram. Soc. 75, 1701 (1992).CrossRefGoogle Scholar
8.Duan, N., Tian, Z-R., Willis, W.S., Suib, S.L., Newsam, J.M., and Levine, S.M., Inorg. Chem. 37, 4697 (1998).CrossRefGoogle Scholar
9.Powder Diffraction Files, Card No. 35–1464 (Joint Committee on Powder Diffraction Standards, Swarthmore, PA, 1992).Google Scholar
10.Powder Diffraction Files, Card No. 38–1470 (Joint Committee on Powder Diffraction Standards, Swarthmore, PA, 1992).Google Scholar
11.Brunner, E., Karge, H.G., and Pfeifer, H., Z. Phys. Chem. 176, 173 (1992).CrossRefGoogle Scholar
12.Fu, S.Q., Lee, W-K., Nowick, A.S., Boatner, L.A., and Abraham, M.M., J. Solid State Chem. 83, 221 (1989).CrossRefGoogle Scholar
13.Chien, A.T., Xu, X., Kim, J.H., Speck, J.S., and Lange, F.F., J. Mater. Res. 14, 3330 (1999).CrossRefGoogle Scholar
14.Hennings, D. and Schreinemacher, S., J. Eur. Ceram. Soc. 9, 41 (1992).CrossRefGoogle Scholar
15.Wada, S., Suzuki, T., and Noma, T., J. Ceram. Soc. Jpn. 104, 383 (1996).CrossRefGoogle Scholar
16.Shi, E-W., Xia, C-T, Zhong, W-Z., Wang, B-G., and Feng, C-D., J. Am. Ceram. Soc. 80, 1567 (1997).CrossRefGoogle Scholar
17.Weller, M.T. and Dickens, P.G., J. Solid State Chem. 58, 164 (1985).CrossRefGoogle Scholar
18.Wada, S., Suzuki, T., and Noma, T., Jpn. J. Appl. Phys. 34, 5368 (1995).CrossRefGoogle Scholar
19.Waser, R., Z. Naturforsch. 42a, 1357 (1987).CrossRefGoogle Scholar
20.Kreuer, K.D., Adams, St., Münch, W., Fuchs, A., Klock, U., and Maier, J., Solid State Ionics 145, 295 (2001).CrossRefGoogle Scholar
21.Li, A-J. and Nussinov, R., Prot. 32, 111 (1998).Google Scholar
22.Shannon, R.D. and Prewitt, C.T., Acta Crystall. B 25, 925 (1969).CrossRefGoogle Scholar
23.Sleight, A.W., Inorg. Chem. 7, 1704 (1968).CrossRefGoogle Scholar
24.Subramanian, M.A., Aravanudan, G., and Rao, G.V. Subba, Prog. Solid State Chem. 15, 55 (1983).CrossRefGoogle Scholar
25.Pannetier, J., J. Phys. Chem. Solids 34, 583 (1973).CrossRefGoogle Scholar
26.Goodenough, J.B., Hong, H.Y-P., and Kafalas, J.A., Mater. Res. Bull. 11, 203 (1976).CrossRefGoogle Scholar
27.Kumada, N., Ozawa, N., Kinomura, N., and Muto, F., Mater. Res. Bull. 20, 583 (1985).CrossRefGoogle Scholar
28.Dickens, P.G. and Weller, M.T., Solid State Comm. 59, 569 (1986).CrossRefGoogle Scholar
29.Butler, M.A. and Biefeld, R.M., Phy. Rev. B 19, 5455 (1979).CrossRefGoogle Scholar
30.Seff, K., in Recent Advances and New Horizons in Zeolite Science and Technology, Stud. Surf. Sci. Catal. 102, edited by Chon, H., Woo, S.I., and Park, S-E. (1996), p. 267.Google Scholar
31.Tapp, N.J., Milestone, N.B., Bowden, M.E., and Meinhold, R.H., Zeolites 10, 105 (1990).CrossRefGoogle Scholar
32.Nenoff, T.M., Parise, J.B., Jones, G.A., Galya, L.G., Corbin, D.R., and Stucky, G.D., J. Phys. Chem. 100, 14256 (1996).CrossRefGoogle Scholar