Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-10T16:57:06.617Z Has data issue: false hasContentIssue false

Hydroxyapatite/diamondlike Carbon Nanocomposites: A Novel Surface Modification to Extend Orthopaedic Prosthesis Lifetimes

Published online by Cambridge University Press:  03 March 2011

Roger J. Narayan*
Affiliation:
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245
*
a) Address all correspondence to this author. e-mail: roger.narayan@mse.gatech.edu
Get access

Abstract

Conventional plasma-sprayed hydroxyapatite coatings suffer from many difficulties that have limited their use in orthopaedic implants, including uneven resorption rates, poor fracture toughness, and poor adhesion to medical alloys. The placement of a diamondlike carbon buffer layer may overcome these obstacles by providing unique chemical inertness, hardness, and cell-interaction properties at the implant–tissue interface. Nanocrystalline hydroxyapatite and amorphous diamondlike carbon films were prepared by room-temperature pulsed-laser deposition of hydroxyapatite and graphite targets, respectively. Scanning electron microscopy, transmission electron microscopy, x-ray diffraction, and microscratch adhesion testing were used to determine surface morphology, interfacial structure, and adhesion of the bilayer coatings. Nanocrystalline hydroxyapatite/diamondlike carbon coatings have several potential orthopaedic applications, including use in hip prostheses.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Buchanan, J.M.: Hydroxyapatite ceramic hip survey ceramic on ceramic bearings. Key Eng. Mater. 212–218, 487 (2002).Google Scholar
2Head, W.C., Bauk, D.J. and Emerson, R.H.: Titanium as the material of choice for cementless femoral components in total hip-arthroplasty. Clin. Orthop. 311, 85 (1995).Google Scholar
3Tigges, S., Stiles, R.G. and Roberson, J.R.: Complications of hip-arthroplasty causing periprosthetic radiolucency on plain radiographs. Am. J. Roentgenol. 162, 1387 (1994).CrossRefGoogle ScholarPubMed
4Haynes, D.R., Crotti, T.N. and Zreiqat, H.: Regulation of osteoclast activity in peri-implant tissues. Biomaterials 25, 4877 (2004).CrossRefGoogle ScholarPubMed
5Sharkawy, A.A., Klitzman, B., Truskey, G.A. and Reichert, W.M.: Engineering the tissue which encapsulates subcutaneous implants: Diffusion properties. J. Biomed. Mater. Res. 37, 401 (1997).3.0.CO;2-E>CrossRefGoogle ScholarPubMed
6Doorn, P.F., Campbell, P.A. and Amstutz, H.C.: Metal versus polyethylene wear particles in total hip replacements. Clin. Orthop. 329, S206 (1996).CrossRefGoogle Scholar
7Bi, Y.M., Seabold, J.M., Kaar, S.G., Ragab, A.A., Goldberg, V.M., Anderson, J.M. and Greenfield, E.M.: Adherent endotoxin on orthopedic wear particles stimulates cytokine production and osteoclast differentiation. J. Bone Miner. Res. 16, 2082 (2001).CrossRefGoogle ScholarPubMed
8Barrack, R.L., Sawhney, J., Hsu, J. and Cofield, R.H.: Cost analysis of revision total hip arthroplasty: A 5-year follow-up study. Clin. Orthop. 369, 175 (1999).CrossRefGoogle Scholar
9Ducheyne, P. and Qiu, Q.: Bioactive ceramics: The effect of surface reactivity on bone formation and bone cell function. Biomaterials 20, 2287 (1999).CrossRefGoogle Scholar
10Dubok, V.A.: Bioceramics—yesterday, today, tomorrow. Powder Metall Metal Ceram. 39, 381 (2000).CrossRefGoogle Scholar
11Dumbleton, J. and Manley, M.T.: Current concepts review—hydroxyapatite-coated prostheses in total hip and knee arthroplasty. J Bone Joint Surg.—Am. 86, 2526 (2004).CrossRefGoogle Scholar
12Liang, H., Shi, B., Fairchild, A. and Cale, T.: Applications of plasma coatings in artificial joints: an overview. Vacuum 73, 317 (2004).CrossRefGoogle Scholar
13Sun, L.M., Berndt, C.C., Khor, K.A., Cheang, H.N. and Gross, K.A.: Surface characteristics and dissolution behavior of plasma-sprayed hydroxyapatite coating. J. Biomed. Mater. Res. 62, 228 (2002).CrossRefGoogle ScholarPubMed
14Lu, Y.P., Li, M.S., Li, S.T., Wang, Z.G. and Zhu, R.F.: Plasma-sprayed hydroxyapatite plus titania composite bond coat for hydroxyapatite coating on titanium substrate. Biomaterials 25, 4393 (2004).CrossRefGoogle Scholar
15Sun, L.M., Berndt, C.C., Gross, K.A. and Kucuk, A.: Material fundamentals and clinical performance of plasma-sprayed hydroxyapatite coatings: A review. J. Biomed. Mater. Res. 58, 570 (2001).CrossRefGoogle ScholarPubMed
16Toimela, T. and Tahti, H.: Mitochondrial viability and apoptosis induced by aluminum, mercuric mercury and methylmercury in cell lines of neural origin. Arch. Toxicol. 78, 565 (2004).CrossRefGoogle ScholarPubMed
17Grant, M.H., Nugent, C. and Bertrand, R.: Studies on nickel-induced inhibition of fibroblast growth. Toxicol. In Vitro 8, 191 (1994).CrossRefGoogle ScholarPubMed
18Gunaratnam, M. and Grant, M.H.: Damage to F-actin and cell death induced by chromium VI and nickel in primary monolayer cultures of rat hepatocytes. Toxicol. In Vitro 18, 245 (2004).CrossRefGoogle ScholarPubMed
19Rodriguez-Mercado, J.J., Roldan-Reyes, E. and Altamirano-Lozano, M.: Genotoxic effects of vanadium(IV) in human peripheral blood cells. Toxicol. Lett. 144, 359 (2003).CrossRefGoogle ScholarPubMed
20Hanawa, T.: Metal ion release from metal implants. Mater. Sci. Eng. C-Biomimet. Supramol. Syst. 24, 745 (2004).CrossRefGoogle Scholar
21Sanz, F.J. Garcia, Mayor, M.B., Arias, J.L., Pou, J., Leon, B. and Amor, M. Perez: Hydroxyapatite coatings: A comparative study between plasma-spray and pulsed laser deposition techniques. J. Mater. Sci. Mater. Med. 8, 861 (1997).CrossRefGoogle Scholar
22Cotell, C.M., Chrisey, D.B., Grabowski, K.S., Sprague, J.A. and Gossett, C.R.: Pulsed laser deposition of hydroxylapatite thin-films on Ti–6Al–4V. J. Appl. Biomater. 3, 87 (1992).CrossRefGoogle Scholar
23Cotell, C.M.: Pulsed-laser deposition and processing of biocompatible hydroxylapatite thin films. Appl. Surf. Sci. 69, 140 (1993).CrossRefGoogle Scholar
24Narayan, R.J., Kumta, P.N., Sfeir, C., Lee, D.H., Olton, D. and Choi, D.W.: Nanostructured ceramics in medical devices: Applications and prospects. JOM 56, 38 (2004).CrossRefGoogle Scholar
25Wei, Q., Sankar, J., Sharma, A.K., Oktyabrsky, S., Narayan, J. and Narayan, R.J.: Atomic structure, electrical properties, and infrared range optical properties of diamondlike-carbon films containing foreign atoms prepared by pulsed laser deposition. J. Mater. Res. 15, 633 (2000).CrossRefGoogle Scholar
26Robertson, J.: Diamond-like amorphous carbon. Mater. Sci. Eng. Rep. 37, 129 (2002).CrossRefGoogle Scholar
27Antilla, A., Tiainen, V.M., Kiuru, M., Alakoski, E. and Arstila, K.: Preparation of diamond-like carbon polymer hybrid films using filtered pulsed arc discharge method. Surf. Eng. 19, 425 (2003).CrossRefGoogle Scholar
28Erdemir, A., Eryilmaz, O.L. and Fenske, G.: Synthesis of diamondlike-carbon films with superlow friction and wear properties. J. Vac. Sci. Technol. A 18, 1987 (2000).CrossRefGoogle Scholar
29Lappalainen, R., Selenius, M., Anttila, A., Konttinen, Y.T. and Santavirta, S.S.: Reduction of wear in total hip replacement prostheses by amorphous diamond coatings. J. Biomed. Mater. Res. Part B—Appl. Biomater. 66B, 410 (2003).CrossRefGoogle Scholar
30Allen, M., Myer, B. and Rushton, N.: In vitro and in vivo investigations into the biocompatibility of diamond-like carbon (DLC) coatings for orthopedic applications. J. Biomed. Mater. Res. 58, 319 (2001).3.0.CO;2-F>CrossRefGoogle ScholarPubMed
31Thomson, L.A., Law, F.C., Rushton, N. and Franks, J.: Biocompatibility of diamond-like carbon coating. Biomaterials 12, 37 (1991).CrossRefGoogle ScholarPubMed
32Linder, S., Pinkowski, W. and Aepfelbacher, M.: Adhesion, cytoskeletal architecture and activation status of primary human macrophages on a diamond-like carbon coated surface. Biomaterials 23, 767 (2002).CrossRefGoogle ScholarPubMed
33Jones, M.I., McColl, I.R., Grant, D.M., Parker, K.G. and Parker, T.L.: Haemocompatibility of DLC and TiC–TiN interlayers on titanium. Diamond Relat. Mater. 8, 457 (1999).CrossRefGoogle Scholar
34Radovic, M., Lara-Curzio, E. and Riester, L.: Comparison of different experimental techniques for determination of elastic properties of solids. Mater. Sci. Eng. A—Struct. Mater. Prop. Microstruct. Process. 368, 56 (2004).CrossRefGoogle Scholar
35Sharma, A.K., Narayan, R.J., Narayan, J. and Jagannadham, K.: Structural and tribological characteristics of diamond-like carbon films deposited by pulsed laser ablation. Mater. Sci. Eng. B–Solid State Mater. Adv. Technol. 77, 139 (2000).CrossRefGoogle Scholar
36Bruley, J., Williams, D.B., Cuomo, J.J. and Pappas, D.P.: Quantitative near-edge structure-analysis of diamond-like carbon in the electron-microscope using a 2-window method. J. Microsc.– Oxford 180, 22 (1995).CrossRefGoogle Scholar
37Craciun, V., Craciun, D., Perriere, J. and Boyd, I.W.: Droplet formation during extended time pulsed laser deposition of La0.5Sr0.5CoO3 thin layers. J. Appl. Phys. 85, 3310 (1999).CrossRefGoogle Scholar
38Wang, M., Joseph, R. and Bonfield, W.: Hydroxyapatite–polyethylene composites for bone substitution: Effects of ceramic particle size and morphology. Biomaterials 19, 2357 (1998).CrossRefGoogle ScholarPubMed
39Kim, S.K. and Yoo, H.J.: Formation of bilayer Ni–SiC composite coatings by electrodeposition. Surf. Coatings Technol. 108, 564 (1998).CrossRefGoogle Scholar
40Klabunde, K.J., Stark, J., Koper, O., Mohs, C., Park, D.G., Decker, S., Jiang, Y., Lagadic, I. and Zhang, D.J.: Nanocrystals as stoichiometric reagents with unique surface chemistry. J. Phys. Chem. 100, 12142 (1996).CrossRefGoogle Scholar
41Webster, T.J. and Ejiofor, J.U.: Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. Biomaterials 25, 4731 (2004).CrossRefGoogle ScholarPubMed
42Arias, J.L., Mayor, M.B., Pou, J., Leng, Y., Leon, B. and Perez-Amor, M.: Micro- and nanotesting of calcium phosphate coatings produced by pulsed laser deposition. Biomaterials 24, 3403 (2003).CrossRefGoogle ScholarPubMed
43Juliaschmutz, C. and Hintermann, H.E.: Microscratch testing to characterize the adhesion of thin-layers. Surf. Coatings Technol. 48, 1 (1991).CrossRefGoogle Scholar
44Narayan, J., Venkatesan, R.K. and Kvit, A.: Structure and properties of nanocrystalline zinc films. J. Nanoparticle Res. 4, 265 (2002).CrossRefGoogle Scholar