Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T01:05:48.722Z Has data issue: false hasContentIssue false

Influence of experiment parameters on the growth of cBN films by bias-assisted direct current jet plasma chemical vapor deposition

Published online by Cambridge University Press:  31 January 2011

W. J. Zhang*
Affiliation:
National Institute for Research in Inorganic Materials, 1–1 Namiki, Tsukuba, Ibaraki 305–0044, Japan
S. Matsumoto*
Affiliation:
National Institute for Research in Inorganic Materials, 1–1 Namiki, Tsukuba, Ibaraki 305–0044, Japan
Get access

Abstract

Boron nitride films were synthesized on silicon substrates by radio frequency-bias- assisted direct current jet chemical vapor deposition in Ar–N2–BF3–H2 system. The formation and content of cBN phase were investigated by means of Fourier transform infrared spectroscopy, glancing-angle x-ray diffraction, and scanning electron microscopy. The influences of the experimental parameters, i.e., bias voltage, substrate temperature, and gas composition, on the cBN content in the deposited films were systematically studied, and an experimentally optimum window for the deposition of cBN films was observed. Under optimized conditions, a boron nitride film with cBN content higher than 85% was deposited and a growth rate of about 70 nm/min was achieved.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Heath, P.J., VDI-Berichte 762, 27 (1989).Google Scholar
2.Inagawa, K., Watanabe, K., Ohsone, H., Saitoh, K., and Itoh, A., J. Vac. Sci. Technol. A 5, 2696 (1987).Google Scholar
3.Mieno, M. and Yoshida, T., Jpn. J. Appl. Phys. 29, L1175 (1990).Google Scholar
4.Kinder, S., Taylor, C.A. II, and Clarke, R., Appl. Phys. Lett. 64, 1859 (1994).Google Scholar
5.Kester, D.J. and Messier, R., J. Appl. Phys. 72, 504 (1992).Google Scholar
6.Friedmann, T.A., Mirkarimi, P.R., Meddlin, D.L., McCarty, K.F., Klaus, E.J., Boehme, D.R., Johnsen, H.A., Mills, M.J., Ottesen, D.K., and Barbour, J.C., J. Appl. Phys. 76, 3088 (1994).CrossRefGoogle Scholar
7.Hofsäss, H., Ronning, C., Griesmeier, U., Gross, M., Reinke, S., and Kuhr, M., Appl. Phys. Lett. 67, 46 (1995).Google Scholar
8.Sueda, M., Kobayashi, T., Rokkaku, T., Ogawa, M., Watanabe, T., and Morimoto, S., J. Vac. Sci. Technol. A 16, 3287 (1998).CrossRefGoogle Scholar
9.Saitoh, H. and Yarbrough, W., Appl. Phys. Lett. 58, 2228 (1991).Google Scholar
10.Okamoto, M., Yokoyama, H., and Osaka, Y., Jpn. J. Appl. Phys. 29, 930 (1990).Google Scholar
11.Weber, A., Bringmann, U., Nikulski, R., and Klages, C.P., Surf. Coat. Technol. 60, 493 (1993).Google Scholar
12.Karim, M., Cameron, D., Murhy, M., and Hashmi, M., Surf. Coat. Technol. 49, 416 (1991).CrossRefGoogle Scholar
13.Dworschak, W., Jung, K., and Ehrhardt, H., Diamond Relat. Mater. 3, 337 (1994).Google Scholar
14.Ichiki, T. and Yoshida, T., Appl. Phys. Lett. 64, 851 (1994).CrossRefGoogle Scholar
15.Kuhr, M., Freudenstein, R., Reinke, S., Kulisch, W., Dollinger, G., and Bergmaier, A., J. Chem. Vap. Deposition 3, 259 (1995).Google Scholar
16.Kuhr, M., Reine, S., and Kulisch, W., Diamond Relat. Mater. 4, 375 (1995).CrossRefGoogle Scholar
17.Saitoh, H., Morino, H., and Ichinose, Y., Jpn. J. Appl. Phys. 11, L1684 (1993).Google Scholar
18.Berns, D.H. and Cappelli, M.A., Appl. Phys. Lett. 68, 2711 (1996).Google Scholar
19.Berns, D.H. and Cappelli, M.A., J. Mater. Res. 12, 2014 (1997).Google Scholar
20.Nyquist, R.A. and Kagel, R.O., Infrared Spectra of Inorganic Compounds (Academic Press, New York, 1971).Google Scholar
21.Robertson, J., Diamond Relat. Mater. 5, 519 (1996).Google Scholar
22.Mirkarimi, P.B., McKarty, K.F., Medlin, D.L., Wolfer, W.G., Friedmann, T.A., Klaus, E.J., Cardinale, G.F., and Howitt, D.G., J. Mater. Res. 9, 2925 (1994).Google Scholar
23.Zhang, W.J. and Matsumoto, S., Appl. Phys. A 71, 469 (2000).Google Scholar
24.Bohr, S., Haubner, R., and Lux, B., Diamond Relat. Mater. 4, 714 (1995).CrossRefGoogle Scholar
25.Kalss, W., Haubner, R., and Lux, B., Diamond Relat. Mater. 7, 369 (1998).Google Scholar
26.Zhang, W.J. and Matsumoto, S., Chem. Phys. Lett. (in press).Google Scholar
27.Matsumoto, S., Nishida, N., Akashi, K., and Sugai, K., J. Mater. Sci. 31, 713 (1996).CrossRefGoogle Scholar