Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-28T06:35:02.222Z Has data issue: false hasContentIssue false

Influence of side-chain isomerization on the isothermal crystallization kinetics of poly(3-alkylthiophenes)

Published online by Cambridge University Press:  07 September 2020

Zhiyuan Qian
Affiliation:
School of Polymer Science and Engineering, Center for Optoelectronic Materials and Devices, The University of Southern Mississippi, Hattiesburg, Mississippi39406, USA
Shaochuan Luo
Affiliation:
Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, and The State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing210093, P.R. China
Tengfei Qu
Affiliation:
Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, and The State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing210093, P.R. China
Luke A. Galuska
Affiliation:
School of Polymer Science and Engineering, Center for Optoelectronic Materials and Devices, The University of Southern Mississippi, Hattiesburg, Mississippi39406, USA
Song Zhang
Affiliation:
School of Polymer Science and Engineering, Center for Optoelectronic Materials and Devices, The University of Southern Mississippi, Hattiesburg, Mississippi39406, USA
Zhiqiang Cao
Affiliation:
School of Polymer Science and Engineering, Center for Optoelectronic Materials and Devices, The University of Southern Mississippi, Hattiesburg, Mississippi39406, USA
Sujata Dhakal
Affiliation:
School of Polymer Science and Engineering, Center for Optoelectronic Materials and Devices, The University of Southern Mississippi, Hattiesburg, Mississippi39406, USA
Youjun He
Affiliation:
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, USA
Kunlun Hong
Affiliation:
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, USA Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996, USA
Dongshan Zhou
Affiliation:
Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, and The State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing210093, P.R. China
Xiaodan Gu*
Affiliation:
School of Polymer Science and Engineering, Center for Optoelectronic Materials and Devices, The University of Southern Mississippi, Hattiesburg, Mississippi39406, USA
*
a)Address all correspondence to this author. e-mail: xiaodan.gu@usm.edu
Get access

Abstract

Flexible alkyl side chain in conjugate polymers (CPs) improves the solubility and promotes solution processability, in addition, it affects interchain packing and charge mobilities. Despite the well-known charge mobility and morphology correlation for these semi-crystalline polymers, there is a lack of fundamental understanding of the impact of side chain on their crystallization kinetics. In the present work, isothermal crystallization of five poly(3-alkylthiophene-2,5-diyl) (P3ATs) with different side-chain structures were systematically investigated. To suppress the extremely fast crystallization and trap the sample into amorphous glass, an advanced fast scanning chip calorimetry technique, which is able to quench the sample with few to tens thousands of K/s, was applied. Results show that the crystallization of P3ATs was greatly inhibited after incorporation of branched side chains, as indicated by a dramatic up to six orders of magnitude decrease in the crystallization rate. The suppressed crystallization of P3ATs were correlated with an increased π–π stacking distance due to unfavorable side-chain steric interaction. This work provides a pathway to use side-chain engineering to control the crystallization behavior for CPs, thus to control device performance.

Type
Invited Feature Paper
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

b)

These authors contributed equally.

References

Mei, J., Diao, Y., Appleton, A.L., Fang, L., and Bao, Z.: Integrated materials design of organic semiconductors for field-effect transistors. J. Am. Chem. Soc. 135, 6724 (2013).CrossRefGoogle ScholarPubMed
Bronstein, H., Nielsen, C.B., Schroeder, B.C., and McCulloch, I.: The role of chemical design in the performance of organic semiconductors. Nat. Rev. Chem. 4, 66 (2020).CrossRefGoogle Scholar
Tseng, H-R., Phan, H., Luo, C., Wang, M., Perez, L.A., Patel, S.N., Ying, L., Kramer, E.J., Nguyen, T-Q., Bazan, G.C., and Heeger, A.J.: High-mobility field-effect transistors fabricated with macroscopic aligned semiconducting polymers. Adv. Mater. 26, 2993 (2014).CrossRefGoogle ScholarPubMed
Luo, C., Kyaw, A.K.K., Perez, L.A., Patel, S., Wang, M., Grimm, B., Bazan, G.C., Kramer, E.J., and Heeger, A.J.: General strategy for self-assembly of highly oriented nanocrystalline semiconducting polymers with high mobility. Nano Lett. 14, 2764 (2014).CrossRefGoogle ScholarPubMed
Himmelberger, S. and Salleo, A.: Engineering semiconducting polymers for efficient charge transport. MRS Commun. 5, 383 (2015).CrossRefGoogle Scholar
Meng, L., Zhang, Y., Wan, X., Li, C., Zhang, X., Wang, Y., Ke, X., Xiao, Z., Ding, L., Xia, R., Yip, H-L., Cao, Y., and Chen, Y.: Organic and solution-processed tandem solar cells with 17.3% efficiency. Science 361, 1094 (2018).CrossRefGoogle ScholarPubMed
Noriega, R., Rivnay, J., Vandewal, K., Koch, F.P.V., Stingelin, N., Smith, P., Toney, M.F., and Salleo, A.: A general relationship between disorder, aggregation and charge transport in conjugated polymers. Nat. Mater. 12, 1038 (2013).CrossRefGoogle ScholarPubMed
Yang, Y., Liu, Z., Zhang, G., Zhang, X., and Zhang, D.: The effects of side chains on the charge mobilities and functionalities of semiconducting conjugated polymers beyond solubilities. Adv. Mater. 31, 1903104 (2019).CrossRefGoogle ScholarPubMed
Mei, J., Kim, D.H., Ayzner, A.L., Toney, M.F., and Bao, Z.: Siloxane-terminated solubilizing side chains: Bringing conjugated polymer backbones closer and boosting hole mobilities in thin-film transistors. J. Am. Chem. Soc. 133, 20130 (2011).CrossRefGoogle ScholarPubMed
Koch, F.P.V., Rivnay, J., Foster, S., Müller, C., Downing, J.M., Buchaca-Domingo, E., Westacott, P., Yu, L., Yuan, M., Baklar, M., Fei, Z., Luscombe, C., McLachlan, M.A., Heeney, M., Rumbles, G., Silva, C., Salleo, A., Nelson, J., Smith, P., and Stingelin, N.: The impact of molecular weight on microstructure and charge transport in semicrystalline polymer semiconductors–poly(3-hexylthiophene), a model study. Prog. Polym. Sci. 38, 1978 (2013).CrossRefGoogle Scholar
Kline, R.J., DeLongchamp, D.M., Fischer, D.A., Lin, E.K., Richter, L.J., Chabinyc, M.L., Toney, M.F., Heeney, M., and McCulloch, I.: Critical role of side-chain attachment density on the order and device performance of polythiophenes. Macromolecules 40, 7960 (2007).CrossRefGoogle Scholar
Causin, V., Marega, C., Marigo, A., Valentini, L., and Kenny, J.M.: Crystallization and melting behavior of poly(3-butylthiophene), poly(3-octylthiophene), and poly(3-dodecylthiophene). Macromolecules 38, 409 (2005).CrossRefGoogle Scholar
Malik, S. and Nandi, A.K.: Crystallization mechanism of regioregular poly(3-alkyl thiophene)s. J. Polym. Sci. B Polym. Phys. 40, 2073 (2002).CrossRefGoogle Scholar
Balko, J., Lohwasser, R.H., Sommer, M., Thelakkat, M., and Thurn-Albrecht, T.: Determination of the crystallinity of semicrystalline poly(3-hexylthiophene) by means of wide-angle X-ray scattering. Macromolecules 46, 9642 (2013).CrossRefGoogle Scholar
Snyder, C.R., Nieuwendaal, R.C., DeLongchamp, D.M., Luscombe, C.K., Sista, P., and Boyd, S.D.: Quantifying crystallinity in high molar mass poly(3-hexylthiophene). Macromolecules 47, 3942 (2014).CrossRefGoogle Scholar
Snyder, C.R., Henry, J.S., and DeLongchamp, D.M.: Effect of regioregularity on the semicrystalline structure of poly(3-hexylthiophene). Macromolecules 44, 7088 (2011).CrossRefGoogle Scholar
Treat, N.D., Nekuda Malik, J.A., Reid, O., Yu, L., Shuttle, C.G., Rumbles, G., Hawker, C.J., Chabinyc, M.L., Smith, P., and Stingelin, N.: Microstructure formation in molecular and polymer semiconductors assisted by nucleation agents. Nat. Mater. 12, 628 (2013).CrossRefGoogle ScholarPubMed
Ho, V., Boudouris, B.W., and Segalman, R.A.: Tuning polythiophene crystallization through systematic side chain functionalization. Macromolecules 43, 7895 (2010).CrossRefGoogle Scholar
Boudouris, B.W., Ho, V., Jimison, L.H., Toney, M.F., Salleo, A., and Segalman, R.A.: Real-time observation of poly(3-alkylthiophene) crystallization and correlation with transient optoelectronic properties. Macromolecules 44, 6653 (2011).CrossRefGoogle Scholar
Duong, D.T., Ho, V., Shang, Z., Mollinger, S., Mannsfeld, S.C.B., Dacuña, J., Toney, M.F., Segalman, R., and Salleo, A.: Mechanism of crystallization and implications for charge transport in poly(3-ethylhexylthiophene) thin films. Adv. Funct. Mater. 24, 4515 (2014).CrossRefGoogle Scholar
Yu, L., Davidson, E., Sharma, A., Andersson, M.R., Segalman, R., and Müller, C.: Isothermal crystallization kinetics and time–temperature–transformation of the conjugated polymer: Poly(3-(2′-ethyl)hexylthiophene). Chem. Mater. 29, 5654 (2017).CrossRefGoogle Scholar
Avrami, M.: Kinetics of phase change. II Transformation-time relations for random distribution of nuclei. J. Chem. Phys. 8, 212 (1940).CrossRefGoogle Scholar
Wu, W-R., Jeng, U.S., Su, C-J., Wei, K-H., Su, M-S., Chiu, M-Y., Chen, C-Y., Su, W-B., Su, C-H., and Su, A-C.: Competition between fullerene aggregation and poly(3-hexylthiophene) crystallization upon annealing of bulk heterojunction solar cells. ACS Nano 5, 6233 (2011).CrossRefGoogle ScholarPubMed
Da Pian, M., Maggini, M., Vancso, G.J., Causin, V., and Benetti, E.M.: Poly(3-hexylthiophene) nanowhiskers filler in poly(ε-caprolactone) based nanoblends as potential bioactive material. Eur. Polym. J. 114, 144 (2019).CrossRefGoogle Scholar
Risteen, B., McBride, M., Gonzalez, M., Khau, B., Zhang, G., and Reichmanis, E.: Functionalized cellulose nanocrystal-mediated conjugated polymer aggregation. ACS Appl. Mater. Interfaces 11, 25338 (2019).CrossRefGoogle ScholarPubMed
Liu, J., Sheina, E., Kowalewski, T., and McCullough, R.D.: Tuning the electrical conductivity and self-assembly of regioregular polythiophene by block copolymerization: Nanowire morphologies in new di- and triblock copolymers. Angew. Chem. Int. Ed. 41, 329 (2002).3.0.CO;2-M>CrossRefGoogle Scholar
Müller, C., Radano, C.P., Smith, P., and Stingelin-Stutzmann, N.: Crystalline–crystalline poly(3-hexylthiophene)–polyethylene diblock copolymers: Solidification from the melt. Polymer 49, 3973 (2008).CrossRefGoogle Scholar
Coote, J.P., Kim, J-S., Lee, B., Han, J., Kim, B.J., and Stein, G.E.: Crystallization modes of poly(3-dodecylthiophene)-based block copolymers depend on regioregularity and morphology. Macromolecules 51, 9276 (2018).CrossRefGoogle Scholar
Ho, V., Boudouris, B.W., McCulloch, B.L., Shuttle, C.G., Burkhardt, M., Chabinyc, M.L., and Segalman, R.A.: Poly(3-alkylthiophene) diblock copolymers with ordered microstructures and continuous semiconducting pathways. J. Am. Chem. Soc. 133, 9270 (2011).CrossRefGoogle ScholarPubMed
Patel, S.N., Javier, A.E., Beers, K.M., Pople, J.A., Ho, V., Segalman, R.A., and Balsara, N.P.: Morphology and thermodynamic properties of a copolymer with an electronically conducting block: Poly(3-ethylhexylthiophene)-block-poly(ethylene oxide). Nano Lett. 12, 4901 (2012).CrossRefGoogle Scholar
Davidson, E.C., Beckingham, B.S., Ho, V., and Segalman, R.A.: Confined crystallization in lamellae forming poly(3-(2′-ethyl)hexylthiophene) (P3EHT) block copolymers. J. Polym. Sci. B Polym. Phys. 54, 205 (2016).CrossRefGoogle Scholar
Davidson, E.C. and Segalman, R.A.: Confined crystallization within cylindrical P3EHT block copolymer microdomains. Macromolecules 50, 6128 (2017).CrossRefGoogle Scholar
Davidson, E.C. and Segalman, R.A.: Thermal control of confined crystallization within P3EHT block copolymer microdomains. Macromolecules 50, 8097 (2017).CrossRefGoogle Scholar
Zhuravlev, E. and Schick, C.: Fast scanning power compensated differential scanning nano-calorimeter: 1. The device. Thermochim. Acta 505, 1 (2010).CrossRefGoogle Scholar
Zhuravlev, E. and Schick, C.: Fast scanning power compensated differential scanning nano-calorimeter: 2. Heat capacity analysis. Thermochim. Acta 505, 14 (2010).CrossRefGoogle Scholar
Zhuravlev, E., Schmelzer, J.W.P., Wunderlich, B., and Schick, C.: Kinetics of nucleation and crystallization in poly(ɛ-caprolactone) (PCL). Polymer 52, 1983 (2011).CrossRefGoogle Scholar
Mileva, D., Androsch, R., Zhuravlev, E., Schick, C., and Wunderlich, B.: Homogeneous nucleation and mesophase formation in glassy isotactic polypropylene. Polymer 53, 277 (2012).CrossRefGoogle Scholar
Luo, X., Xie, S., Liu, J., Hu, H., Jiang, J., Huang, W., Gao, H., Zhou, D., , Z., and Yan, D.: The relationship between the degree of branching and glass transition temperature of branched polyethylene: Experiment and simulation. Polym. Chem. 5, 1305 (2014).CrossRefGoogle Scholar
Zhuravlev, E., Madhavi, V., Lustiger, A., Androsch, R., and Schick, C.: Crystallization of polyethylene at large undercooling. ACS Macro Lett. 5, 365 (2016).CrossRefGoogle Scholar
Van den Brande, N., Van Assche, G., and Van Mele, B.: Isothermal structure development in submicron P3HT layers studied by fast scanning chip calorimetry. Polymer 57, 39 (2015).CrossRefGoogle Scholar
Masuda, N., Tanba, S., Sugie, A., Monguchi, D., Koumura, N., Hara, K., and Mori, A.: Stepwise construction of head-to-tail-type oligothiophenes via iterative palladium-catalyzed CH arylation and halogen exchange. Org. Lett. 11, 2297 (2009).CrossRefGoogle ScholarPubMed
Tamba, S., Shono, K., Sugie, A., and Mori, A.: C–H functionalization polycondensation of chlorothiophenes in the presence of nickel catalyst with stoichiometric or catalytically generated magnesium amide. J. Am. Chem. Soc. 133, 9700 (2011).CrossRefGoogle ScholarPubMed
Tamba, S., Tanaka, S., Okubo, Y., Meguro, H., Okamoto, S., and Mori, A.: Nickel-catalyzed dehydrobrominative polycondensation for the practical preparation of regioregular poly(3-substituted thiophene)s. Chem. Lett. 40, 398 (2011).CrossRefGoogle Scholar
Tanaka, S., Tamba, S., Tanaka, D., Sugie, A., and Mori, A.: Synthesis of well-defined head-to-tail-type oligothiophenes by regioselective deprotonation of 3-substituted thiophenes and nickel-catalyzed cross-coupling reaction. J. Am. Chem. Soc. 133, 16734 (2011).CrossRefGoogle ScholarPubMed
Miyakoshi, R., Yokoyama, A., and Yokozawa, T.: Synthesis of poly(3-hexylthiophene) with a narrower polydispersity. Macromol. Rapid Commun. 25, 1663 (2004).CrossRefGoogle Scholar
Iovu, M.C., Sheina, E.E., Gil, R.R., and McCullough, R.D.: Experimental evidence for the quasi-“living” nature of the Grignard metathesis method for the synthesis of regioregular poly(3-alkylthiophenes). Macromolecules 38, 8649 (2005).CrossRefGoogle Scholar
Kim, J-S., Kim, J-H., Lee, W., Yu, H., Kim, H.J., Song, I., Shin, M., Oh, J.H., Jeong, U., Kim, T-S., and Kim, B.J.: Tuning mechanical and optoelectrical properties of poly(3-hexylthiophene) through systematic regioregularity control. Macromolecules 48, 4339 (2015).CrossRefGoogle Scholar
A. International: Standard test method for assignment of the glass transition temperatures by differential scanning calorimetry .In ASTM E1356-08. 2014. (ASTM International, West Conshohocken, PA), pp. 1.Google Scholar
Cao, Z., Galuska, L., Qian, Z., Zhang, S., Huang, L., Prine, N., Li, T., He, Y., Hong, K., and Gu, X.: The effect of side-chain branch position on the thermal properties of poly(3-alkylthiophenes). Polym. Chem. 11, 517 (2020).CrossRefGoogle Scholar
Qian, Z., Galuska, L., McNutt, W.W., Ocheje, M.U., He, Y., Cao, Z., Zhang, S., Xu, J., Hong, K., Goodman, R.B., Rondeau-Gagné, S., Mei, J., and Gu, X.: Challenge and solution of characterizing glass transition temperature for conjugated polymers by differential scanning calorimetry. J. Polym. Sci. B Polym. Phys. 57, 1635 (2019).CrossRefGoogle Scholar
McCulloch, B., Ho, V., Hoarfrost, M., Stanley, C., Do, C., Heller, W.T., and Segalman, R.A.: Polymer chain shape of poly(3-alkylthiophenes) in solution using small-angle neutron scattering. Macromolecules 46, 1899 (2013).CrossRefGoogle Scholar
Pankaj, S., Hempel, E., and Beiner, M.: Side-chain dynamics and crystallization in a series of regiorandom poly(3-alkylthiophenes). Macromolecules 42, 716 (2009).CrossRefGoogle Scholar
Qian, Z., Cao, Z., Galuska, L., Zhang, S., Xu, J., and Gu, X.: Glass transition phenomenon for conjugated polymers. Macromol. Chem. Phys., 220, 1900062 (2019).CrossRefGoogle Scholar
Zhuravlev, E., Wurm, A., Pötschke, P., Androsch, R., Schmelzer, J.W.P., and Schick, C.: Kinetics of nucleation and crystallization of poly(ε-caprolactone) – Multiwalled carbon nanotube composites. Eur. Polym. J. 52, 1 (2014).CrossRefGoogle Scholar
Chen, L., Jiang, J., Wei, L., Wang, X., Xue, G., and Zhou, D.: Confined nucleation and crystallization kinetics in lamellar crystalline–amorphous diblock copolymer poly(ε-caprolactone)-b-poly(4-vinylpyridine). Macromolecules 48, 1804 (2015).CrossRefGoogle Scholar
Luo, S., Kui, X., Xing, E., Wang, X., Xue, G., Schick, C., Hu, W., Zhuravlev, E., and Zhou, D.: Interplay between free surface and solid interface nucleation on two-step crystallization of poly(ethylene terephthalate) thin films studied by fast scanning calorimetry. Macromolecules 51, 5209 (2018).CrossRefGoogle Scholar
Lee, S.S., Kim, C.S., Gomez, E.D., Purushothaman, B., Toney, M.F., Wang, C., Hexemer, A., Anthony, J.E., and Loo, Y-L.: Controlling nucleation and crystallization in solution-processed organic semiconductors for thin-film transistors. Adv. Mater. 21, 3605 (2009).CrossRefGoogle Scholar
Lee, S.S., Tang, S.B., Smilgies, D-M., Woll, A.R., Loth, M.A., Mativetsky, J.M., Anthony, J.E., and Loo, Y-L.: Guiding crystallization around bends and sharp corners. Adv. Mater. 24, 2692 (2012).CrossRefGoogle ScholarPubMed
Hailey, A.K., Petty, A.J. II, Washbourne, J., Thorley, K.J., Parkin, S.R., Anthony, J.E., and Loo, Y-L.: Understanding the crystal packing and organic thin-film transistor performance in isomeric guest–host systems. Adv. Mater. 29, 1700048 (2017).CrossRefGoogle ScholarPubMed
Petty, A.J., Ai, Q., Sorli, J.C., Haneef, H.F., Purdum, G.E., Boehm, A., Granger, D.B., Gu, K., Rubinger, C.P.L., Parkin, S.R., Graham, K.R., Jurchescu, O.D., Loo, Y-L., Risko, C., and Anthony, J.E.: Computationally aided design of a high-performance organic semiconductor: The development of a universal crystal engineering core. Chem. Sci. 10, 10543 (2019).CrossRefGoogle ScholarPubMed
Melis, C., Colombo, L., and Mattoni, A.: Self-assembling of poly(3-hexylthiophene). J. Phys. Chem. C 115, 576 (2011).CrossRefGoogle Scholar
Hong, W.D., Lam, C.N., Wang, Y., He, Y., Sánchez-Díaz, L.E., Do, C., and Chen, W-R.: Influence of side chain isomerism on the rigidity of poly(3-alkylthiophenes) in solutions revealed by neutron scattering. Phys. Chem. Chem. Phys. 21, 7745 (2019).CrossRefGoogle ScholarPubMed
Lei, T., Dou, J-H., and Pei, J.: Influence of alkyl chain branching positions on the hole mobilities of polymer thin-film transistors. Adv. Mater. 24, 6457 (2012).CrossRefGoogle ScholarPubMed
Dou, J-H., Zheng, Y-Q., Lei, T., Zhang, S-D., Wang, Z., Zhang, W-B., Wang, J-Y., and Pei, J.: Systematic investigation of side-chain branching position effect on electron carrier mobility in conjugated polymers. Adv. Funct. Mater. 24, 6270 (2014).CrossRefGoogle Scholar
Park, G.E., Shin, J., Lee, D.H., Cho, M.J., and Choi, D.H.: Effect of branched alkyl side chains on the performance of thin-film transistors and photovoltaic cells fabricated with isoindigo-based conjugated polymers. J. Polym. Sci. A Polym. Chem. 53, 1226 (2015).CrossRefGoogle Scholar
Kang, I., Yun, H-J., Chung, D.S., Kwon, S-K., and Kim, Y-H.: Record high hole mobility in polymer semiconductors via side-chain engineering. J. Am. Chem. Soc. 135, 14896 (2013).CrossRefGoogle ScholarPubMed
Fu, B., Baltazar, J., Sankar, A.R., Chu, P-H., Zhang, S., Collard, D.M., and Reichmanis, E.: Enhancing field-effect mobility of conjugated polymers through rational design of branched side chains. Adv. Funct. Mater. 24, 3734 (2014).CrossRefGoogle Scholar
Bridges, C.R., Ford, M.J., Thomas, E.M., Gomez, C., Bazan, G.C., and Segalman, R.A.: Effects of side chain branch point on self assembly, structure, and electronic properties of high mobility semiconducting polymers. Macromolecules 51, 8597 (2018).CrossRefGoogle Scholar
Ilavsky, J.: Nika: software for two-dimensional data reduction. J. Appl. Crystallogr. 45, 324 (2012).CrossRefGoogle Scholar
Toledo, M.: Flash DSC 2+ STARe System User Manual.Google Scholar
Minakov, A.A. and Schick, C.: Ultrafast thermal processing and nanocalorimetry at heating and cooling rates up to 1 MK/s. Rev. Sci. Instrum. 78, 073902 (2007).CrossRefGoogle ScholarPubMed
Supplementary material: File

Qian et al. supplementary material

Qian et al. supplementary material

Download Qian et al. supplementary material(File)
File 2.1 MB