Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-02T17:54:46.943Z Has data issue: false hasContentIssue false

The influence of steam on mullite formation from sol-gel precursors

Published online by Cambridge University Press:  18 February 2016

Yong Wang
Affiliation:
Chemical Engineering Department, Washington State University, Pullman, Washington 99163-2710
Dong X. Li
Affiliation:
Chemical Engineering Department, Washington State University, Pullman, Washington 99163-2710
William J. Thomson
Affiliation:
Chemical Engineering Department, Washington State University, Pullman, Washington 99163-2710
Get access

Extract

The effect of steam on the reaction kinetics of both mullite and metastable spinel formation from sol-gel precursors, having an Al/Si atomic ratio of 3/1, was studied using dynamic x-ray diffraction (DXRD) coupled with differential thermal analysis (DTA). Steam was observed to accelerate the nucleation of tetragonal mullite in single phase gels at ~980 °C. When single phase gels are formed with a faster hydrolysis step, the presence of steam also increases the nucleation of metastable spinel at this temperature, possibly due to the in situ formation of boehmite in locally enriched alumina regions at <300 °C. In addition, steam also enhances the decomposition of metastable spinel in single phase gels and transient alumina in the diphasic gel at ~1200 °C, probably as a result of surface interactions of water with spinel or transient alumina grains. There was no observable effect of steam on second stage mullite formation (~1250 °C) in either the single or diphasic gels. This is attributed to the hypothesis that the rate-limiting step at this stage might be the dissolution of alumina into the silica-rich amorphous matrix, a step that is unaffected by the presence of steam.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ossaka, J., Nature (London) 191 (4792), 10001001 (1961).Google Scholar
2. Crofts, J.D. and Marshall, W.W., Trans. Brit. Ceram. Soc. 66, 121126 (1964).Google Scholar
3. Yoldas, B.E., Am. Ceram. Soc. Bull. 59 (4), 479483 (1980).Google Scholar
4. Hoffman, D. W., Roy, R., and Komarneni, S., J. Am. Ceram. Soc. 67 (7), 468471 (1984).CrossRefGoogle Scholar
5. Komarneni, S., Suwa, Y., and Roy, R., J. Am. Ceram. Soc. 69 (7), C-155-C-156 (1986).Google Scholar
6. Okada, K. and Otsuka, N., J. Am. Ceram. Soc. 69 (9), 652656 (1986).Google Scholar
7. Pask, J. A., Zhang, X. W., Tomsia, A. P., and Yoldas, B. E., J. Am. Ceram. Soc. 70 (10), 704707 (1987).Google Scholar
8. Okada, K. and Otsuka, N., J. Am. Ceram. Soc. 70 (10), C-245-C- 247 (1987).Google Scholar
9. Wei, W. and Halloran, J. W., J. Am. Ceram. Soc. 71 (3), 166172 (1988).CrossRefGoogle Scholar
10. Wei, W. and Halloran, J. W., J. Am. Ceram. Soc. 71 (7), 581587 (1988).CrossRefGoogle Scholar
11. Yoldas, B.E. and Partlow, D.P., J. Mater. Sci. 23 (5), 18951900 (1988).CrossRefGoogle Scholar
12. Huling, J.C. and Messing, G.L., J. Am. Ceram. Soc. 72 (9), 17251729 (1989).CrossRefGoogle Scholar
13. Okada, K. and Otsuka, N., J. Mater. Sci. Lett. 8 (9), 10521054 (1989).Google Scholar
14. Li, D. X. and Thomson, W. J., J. Am. Ceram. Soc. 73 (4), 964969 (1990).Google Scholar
15. Li, D.X. and Thomson, W.H., J. Mater. Res. 5, 963969 (1990).Google Scholar
16. Rajendran, S., Rossell, H.J., and Sanders, J.V., J. Mater. Sci. 25 (10), 44624471 (1990).Google Scholar
17. Li, D. X., “Kinetic Studies of Mullite Formation from Aluminosilicate Gels,” Ph.D. Dissertation, Washington State University, 1990.Google Scholar
18. Li, D. X. and Thomson, W. J., J. Am. Ceram. Soc. 74 (3), 574578 (1991).Google Scholar
19. Li, D.X. and Thomson, W.J., J. Mater. Res. 6, 819824 (1991).Google Scholar
20. Li, D.X. and Thomson, W.J., J. Am. Ceram. Soc. 74 (10), 23822387 (1991).Google Scholar
21. Pask, J.A. and Tomsia, A. P., J. Am. Ceram. Soc. 74 (10), 23672373 (1991).Google Scholar
22. Huling, J.C. and Messing, G.L., J. Am. Ceram. Soc. 74 (10), 23742381 (1991).CrossRefGoogle Scholar
23. Okada, K., Otsuka, N., and Sōmiya, S., Ceram. Bull. 70 (10), 16331640 (1991).Google Scholar
24. Sundaresan, S. and Aksay, I. A., J. Am. Ceram. Soc. 74 (10), 23882392 (1991).Google Scholar
25. Aksay, I. A., Dabbs, D. M., and Sarikaya, M., J. Am. Ceram. Soc. 74 (10), 23432358 (1991).Google Scholar
26. Rodrigo, P. D. D. and Boch, P., Int. J. High. Technol. Ceram. 1, 330 (1985).Google Scholar
27. Mroz, T.J. Jr. and Laughner, J.W., J. Am. Ceram. Soc. 72 (3), 508509 (1989).CrossRefGoogle Scholar
28. Jander, W. and Hoffmann, E., Anorg, Z.. Allg. Chem. 218, 211223 (1934).Google Scholar
29. Jesenak, V. and Hrabe, Z., Proc. 8th. Int. Symp. Reac. Solids, 325329 (1976).Google Scholar
30. Montierth, M.R., Gordon, R.S., and Cutler, I.B., in Kinetics of Reactions in Ionic Species, edited by Gray, T. S. and Freechette, V. D. (Plenum Press, New York, 1969), pp. 522544.Google Scholar
31. Burte, A.S. and Nicholson, P.S., J. Am. Ceram. Soc. 55 (9), 469472 (1972).CrossRefGoogle Scholar
32. Kridelbaugh, S.J., Am. J. Soc. 273 (11), 757777 (1973).Google Scholar
33. Dury, T., Roberts, G.J., and Roberts, J.P., in Tech. Papers Int. Congr. Glass, 6th, Washington, DC, 1962, pp. 249255.Google Scholar
34. Gordon, T.M., Can. J. Earth Sci. 8 (7), 844851 (1971).Google Scholar
35. Thomson, W. J., in Ceramic Transactions, Vol. 5, Advanced Characterization Techniques for Ceramics, edited by Young, W. S., McVay, G. L., and Pike, G. E. (American Ceramic Society, Westerville, OH, 1989), pp. 131140.Google Scholar
36. Hietala, S. L., Smith, D. M., Golden, J. L., and Brinker, C. J., J. Am. Ceram. Soc. 72 (12), 23542358 (1989).Google Scholar
37. Fahrenholtz, W.G., Hietala, S.L., Newcomer, P., Dando, N.R., Smith, D.M., and Brinker, C.J., J. Am. Ceram. Soc. 74 (10), 23932397 (1991).CrossRefGoogle Scholar
38. Cameron, W.E., Am. Mineral. 62 (7,8), 747755 (1977).Google Scholar
39. Sonuparlak, B., Sarikaya, M., and Aksay, I. A., J. Am. Ceram. Soc. 70 (11), 837842 (1987).CrossRefGoogle Scholar
40. Shannon, R.D., Gardner, K.H., Staley, R.H., Bergeret, G., Gallezot, P., and Auroux, A., J. Phys. Chem. 89 (22), 47784788 (1985).Google Scholar
41. Hrabe, Z., Komarneni, S., Pach, L., and Roy, R., J. Mater. Res. 7, 444449 (1992).Google Scholar
42. Pach, L., Roy, R., and Komarneni, S., J. Mater. Res. 5, 278285 (1990).CrossRefGoogle Scholar
43. Iler, R.K., J. Am. Ceram. Soc. 47 (7), 339341 (1964).Google Scholar