Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-14T19:20:43.273Z Has data issue: false hasContentIssue false

Inhomogeneities in acid-catalyzed titania–silica and zirconia–silica xerogels as revealed by small-angle x-ray scattering

Published online by Cambridge University Press:  31 January 2011

G. Mountjoy
Affiliation:
School of Physical Sciences, University of Kent at Canterbury, Canterbury CT2 7NR, United Kingdom
J. S. Rigden
Affiliation:
School of Physical Sciences, University of Kent at Canterbury, Canterbury CT2 7NR, United Kingdom
R. Anderson
Affiliation:
School of Physical Sciences, University of Kent at Canterbury, Canterbury CT2 7NR, United Kingdom
G. W. Wallidge
Affiliation:
Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
R. J. Newport
Affiliation:
School of Physical Sciences, University of Kent at Canterbury, Canterbury CT2 7NR, United Kingdom
M. E. Smith
Affiliation:
Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
Get access

Abstract

The small-angle x-ray scattering (SAXS) technique was used to investigate inhomogeneities on the scale of 10 to 600 Å in acid-catalyzed titania–silica and zirconia–silica xerogels. SAXS of (TiO2)x(SiO2)1−x and (ZrO2)x(SiO2)1−x xerogels with x < 0.1, in which there was no phase separation, showed the presence of two types of inhomogeneity. For Q < 0.05 Å−1 there was a clear departure from Porod scattering which showed that xerogel powder particle surfaces were rough. For 0.1 < Q < 0.4 Å−1 there was a plateau feature corresponding to micropores within the silica-based network, and this feature changes with heat treatment. SAXS of xerogels with x > 0.3 showed the presence of phase-separated regions of metal oxide, which were initially amorphous and crystallized at higher temperatures. A (TiO2)0.18(SiO2)0.82 xerogel that was not initially phase separated became phase separated after heat treatment at 750 °C due to reduced solubility of Ti in the silica network.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.1.Shultz, P.C. and Smyth, H.T., in Amorphous Materials, edited by Douglas, E.W. and Ellis, B. (Wiley, London, United Kingdom, 1972).Google Scholar
2.Itoh, M., Hattori, H., and Tanabe, K.J., J. Catal. 35, 225 (1974).CrossRefGoogle Scholar
3.Nogami, M., J. Non-Cryst. Solids 69, 415 (1985).CrossRefGoogle Scholar
4.Miller, J.B. and Ko, E.I., J. Catal. 159, 58 (1996).CrossRefGoogle Scholar
5.Brinker, C.J. and Scherer, G.W., Sol-Gel Science (Academic Press, San Diego, CA, 1990).Google Scholar
6.Rigden, J.S., Newport, R.J., Smith, M.E., Dirken, P.J., and Bushnell-Wye, G., J Mater. Chem. 6, 337 (1996).CrossRefGoogle Scholar
7.Walters, J.K., Rigden, J.S., Dirken, P.J., Smith, M.E., Howells, W.S., and Newport, R.J., Chem. Phys. Lett. 264, 539 (1997).CrossRefGoogle Scholar
8.Emili, M., Incoccia, L., Mobilio, S., Fagherazzi, G., and Guglielmi, M., J. Non-Cryst. Solids 74, 129 (1985).CrossRefGoogle Scholar
9.Stachs, O., Gerber, T., and Petkov, V., J. Mater. Sci. 32, 4209 (1997).CrossRefGoogle Scholar
10.Liu, Z. and Davis, R.J., J. Phys. Chem. 98, 1253 (1994).CrossRefGoogle Scholar
11.Pickup, D.M., Mountjoy, G., Wallidge, G.W., Newport, R.J., and Smith, M.E., Phys. Chem. Chem. Phys. 1, 2527 (1999).CrossRefGoogle Scholar
12.Walther, K.L., Wokaun, A., Handy, B.E., and Baiker, A., J. Non-Cryst. Solids 134, 47 (1991).CrossRefGoogle Scholar
13.Lee, S.W. and Condrate, R.A., J. Mater. Sci. 23, 2951 (1988).CrossRefGoogle Scholar
14.Dirken, P.J., Smith, M.E., and Whitfield, H.J., J. Phys. Chem. 99, 395 (1995).CrossRefGoogle Scholar
15.Anderson, R., Mountjoy, G., Newport, R.J., and Smith, M.E., J. Non-Cryst. Solids 232–234, 72 (1998).CrossRefGoogle Scholar
16.Mountjoy, G., Pickup, D.M., Wallidge, G.W., Anderson, R., Cole, J.M., Newport, R.J., and Smith, M.E., Chem. Mater. 11, 1253 (1999).CrossRefGoogle Scholar
17.Okasaka, K., Nasu, H., and Kamiya, K., J. Non-Cryst. Solids 136, 103 (1991).CrossRefGoogle Scholar
18.Feigin, L.A. and Svergun, D.I., Structure Analysis by Small-Angle X-ray and Neutron Scattering (Plenum Press, New York, 1987).CrossRefGoogle Scholar
19.Miranda Salvado, I.M., Margaca, F.M.A, and Teixeira, J., J. Non-Cryst. Solids 163, 115 (1993).CrossRefGoogle Scholar
20.Margaca, F.M.A, Miranda Salvado, I.M., and Teixeira, J., J. Non-Cryst. Solids 209, 143 (1997).CrossRefGoogle Scholar
21.Kamiya, T., Mikami, M., and Suzuki, K., J. Non-Cryst. Solids 150, 157 (1992).CrossRefGoogle Scholar
22.Ramirez-del-Solar, M., Esquivias, L., Craievich, A.F., and Zarzycki, J., J. Non-Cryst. Solids 147–148, 206 (1992).CrossRefGoogle Scholar
23.Nogami, M. and Nagasaka, K., J. Non-Cryst. Solids 109, 79 (1989).CrossRefGoogle Scholar
24.Yoldas, B.E., J. Non-Cryst. Solids 38–39, 81 (1980).CrossRefGoogle Scholar
25.Schmidt, P.W., J. Appl. Crystallogr. 24, 414 (1991).CrossRefGoogle Scholar
26.Sinha, S.K., Sirota, E.B., and Garoff, S., Phys. Rev. B 38, 2297 (1988).CrossRefGoogle Scholar
27.Glatter, O. and Kratky, O., Small Angle X-ray Scattering (Academic Press, London, United Kingdom, 1982), p. 121.Google Scholar
28.Stachs, O., Gerber, T., Beyer, Y., and Burger, H., J. Non-Cryst. Solids 180, 197 (1995).CrossRefGoogle Scholar
29.Himmel, B., Gerber, T., and Burger, H., J. Non-Cryst. Solids 119, 1 (1990).CrossRefGoogle Scholar
30.Stachs, O., Petkov, V., and Gerber, T., J. Appl. Crystallogr. 30, 670 (1997).CrossRefGoogle Scholar
31.Warren, B.E., X-ray Diffraction (Addison-Wesley, Reading, United Kingdom, 1969), p. 253.Google Scholar
32.Nair, B.N., Elferink, W.J., Keizer, K., and Verweij, H., J. Colloid Interface Sci. 178, 565 (1996).CrossRefGoogle Scholar
33.Schaefer, D.W. and Keefer, K.D., Phys. Rev. Lett. 53, 1383 (1984).CrossRefGoogle Scholar
34.Nakano, A., Kalia, R.K., and Vashishta, P., Phys. Rev. Lett. 73, 2336 (1994).CrossRefGoogle Scholar
35.Teubner, M. and Strey, R., J. Chem. Phys. 87, 3195 (1987).CrossRefGoogle Scholar
36.Li, J.-C. and Ross, D.K., J. Phys.: Condens. Matter 6, 351 (1994).Google Scholar