Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-28T00:56:39.525Z Has data issue: false hasContentIssue false

Interfacial evolution between Cu and Pb–free Sn–Zn–Ag–Al solders upon aging at 150 °C

Published online by Cambridge University Press:  31 January 2011

Shou Chang Cheng
Affiliation:
Department of Materials Science and Engineering, National Cheng–Kung University, Tainan, Taiwan 701, Republic of China
Kwang Lung Lin
Affiliation:
Department of Materials Science and Engineering, National Cheng–Kung University, Tainan, Taiwan 701, Republic of China
Get access

Abstract

The interfacial intermetallic formation at 150 °C between Cu and various solders, including Sn–9Zn, Sn–8.55Zn–1Ag, and Sn–8.55Zn–1Ag–XAl was investigated. The Al contents X of the quaternary solder alloys investigated were 0.01–0.45 wt.%. The compositions and the growth kinetics of intermetallic compounds (IMCs) were investigated. The IMC consisted of three layers for Sn–9Zn/Cu, Sn–Zn–Ag/Cu, and Sn–Zn–Ag–XAl/Cu specimens after aging for 100–600 h. These three layers included the Cu3(Zn, Sn) phase adjacent to the solder, the Cu6(Sn, Zn)5 phase in the middle, and the Cu–rich phase near to Cu. For long–term aging time over 1000 h, the Cu6(Sn, Zn)5 phase grew, while the Cu3(Zn, Sn) phase diminished. Al segregation formed in the IMC for all of the Sn–Zn–Ag–XAl/Cu specimens after aging.Cracks formed, when aged for 1000 h, at the solder/IMC interface or within the IMC layer for the following solders: Sn–9Zn, Sn–8.55Zn–1Ag, Sn–8.55Zn–1Ag–0.1Al, Sn–8.55Zn–1Ag–0.25Al, and Sn–8.55Zn–1Ag–0.45Al. The crack was not detected up to 3000 h for the Sn–8.55Zn–1Ag–0.01Al/Cu couple, of which the IMC growth rate was the slowest among all solders.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Yost, F.G., in The Metal Science of Joining, edited by Cieslak, M.J., Perepezko, J.H., Kang, S., and Glicksman, M.E. (TMS, Warrendale, PA, 1992), p. 49.Google Scholar
McCormack, M., Jin, S., and Chen, H.S., J. Electron. Mater. 23, 687 (1994).CrossRefGoogle Scholar
Lin, K.L., Wen, L.H., and Liu, T.P., J. Electron. Mater. 27, 97 (1998).CrossRefGoogle Scholar
Lin, K.L. and Liu, T.P., Mater. Chem. Phy. 56, 171 (1998).CrossRefGoogle Scholar
Yamashita, M., Tada, S., and Shiokawa, K., United States Patent No. US006156132A, Dec. 5, 2000.Google Scholar
Mavoori, H., Chin, J., Vaynman, S., Moran, B., Keer, L., and Fine, M.. J. Electron. Mater. 26, (1997).CrossRefGoogle Scholar
Yu, S.P., Hon, M.H., and Wang, M.C., J. Electron. Mater. 16, 76 (2001).Google Scholar
Mei, Z. and Morris, J.M., Jr., J. Electron. Mater. 21, 599 (1992).CrossRefGoogle Scholar
Plumbridge, W.J., J. Mater. Sci. 31, 2501 (1996).CrossRefGoogle Scholar
Ahat, S., Sheng, M., and Luo, L., J. Electron. Mater. 30, 1317 (1999).CrossRefGoogle Scholar
Suganuma, K., Niihara, K., Shoutoku, T., and Nakamura, Y., J. Mater. Res. 13, 2859 (1998).CrossRefGoogle Scholar
Li, G.Y., Mater. Sci. Eng. B 88, 47 (2002).CrossRefGoogle Scholar
Choi, W.K., Kim, J.H., Teong, S.W., and Lee, H.M., J. Mater. Res. 17, 43 (2002).CrossRefGoogle Scholar
Lee, T.Y., Choi, W.J., and Tu, K.N., Jang, J.W., Kao, S.M., Jang, J.W., Kuo, , Lin, J.K., Frear, D.R., Zeng, K., and Kivilahti, J.K., Mater. Res. 17, 291 (2002).CrossRefGoogle Scholar
Massalski, T.B., Murray, J.L., Bennett, L.H., Baker, H., Kacprzak, L., Binary Alloy Phase Diagram, 2nd ed. (ASM New York, 1987), pp. 70, 71.Google Scholar
Suganuma, K., Murata, T., Noguchi, H., and Toyoda, Y., J. Mater. Res. 15, 884 (2000).CrossRefGoogle Scholar
Hultgren, R., Desai, P.D., Hawkins, D.T., Gleiser, M., Kelley, K.K., Selected Values of Thermodynamic Properties of Binary Alloys (ASM, Metals Park, OH, 1973), pp. 19, 1336.Google Scholar
Massalski, T.B., Murray, J.L., Bennett, L.H., Baker, H., Kacprzak, L., Binary Alloy Phase Diagram, 2nd ed. (ASM New York, 1987), pp. 85, 86.Google Scholar
Ahat, S., Shang, M., and Luo, L., J. Mater. Res. 16, 2914 (2001).Google Scholar
Yang, W., Messler, R.W., Jr., and L.E. Felton, J. Electron. Mater. 23, 765 (1994).CrossRefGoogle Scholar
Massalski, T.B., Murray, J.L., Bennett, L.H., Baker, H., Kacprzak, L., Binary Alloy Phase Diagram, 2nd ed. (ASM New York, 1987), pp. 2085, 2086.Google Scholar
Tu, K.N., Lee, T.Y., Jang, J.W., Li, L., Frear, D.R., Zeng, K., Kivilahti, J.K., J. Appl. Phys. 89, 4849 (2001).Google Scholar
Flanders, D.R., Jacobs, E.G., and Pinizzotto, R.F., J. Electron. Mater. 26, 883 (1997).CrossRefGoogle Scholar
Chen, S.W. and Yen, Y.W., J. Electron. Mater. 28, 1203 (1999).CrossRefGoogle Scholar
Careri, G. and Paoletti, A., Nuovo Cimento 10, 575 (1958).Google Scholar
Careri, G., Paoletti, A., and Vincentini, M., Nuovo Cimento 10, 1088 (1958).CrossRefGoogle Scholar
Ma, C.H. and Swalin, R.A., J. Chem. Phys. 36, 3014 (1962).CrossRefGoogle Scholar
Gupta, Y.P., Acta Metall. 14, 1007 (1966).CrossRefGoogle Scholar
Ma, C.H. and Swalin, R.A., Acta Metall. 8, 388 (1960).CrossRefGoogle Scholar
Ghosh, G., Acta Mater. 49, 2609 (2001).CrossRefGoogle Scholar
Lin, K.L. and Hsu, H.M., J. Electron. Mater. 30, 1068 (2001).CrossRefGoogle Scholar