Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-02T18:57:30.479Z Has data issue: false hasContentIssue false

Kinetics and mechanisms of high-temperature creep in polycrystalline aluminum nitride

Published online by Cambridge University Press:  31 January 2011

A. Vasudev
Affiliation:
Department of Materials Science and Engineering, Box 7907, North Carolina State University, Raleigh, North Carolina 27695-7907
K.L. More
Affiliation:
Oak Ridge National Laboratory, High Temperature Materials Laboratory, Oak Ridge, Tennessee 37831-6064
K.S. Ailey-Trent
Affiliation:
Department of Materials Science and Engineering, Box 7907, North Carolina State University, Raleigh, North Carolina 27695-7907
R.F. Davis
Affiliation:
Department of Materials Science and Engineering, Box 7907, North Carolina State University, Raleigh, North Carolina 27695-7907
Get access

Abstract

The operative and controlling mechanisms of steady-state creep in hot-pressed AlN have been determined both from kinetic data within the temperature and constant compressive stress ranges of 1470 to 1670 K and 100 to 370 MPa, respectively, and from the microstructural results of TEM. No secondary phases were detected in the bulk or at the grain boundaries using Raman spectroscopy and HREM. The stress exponent was ≍1.0 at all temperatures. The activation energies ranged between 558 and 611 kJ/mol. The most prominent microstructural features of the crept samples were elongated grains, strain whorls, and triple-point folds. Dislocations were generated only at the strain whorls in order to relieve the localized stress caused by intraboundary mechanical interaction among the grains. They contributed little to the observed deformation. The controlling mechanism for creep was diffusion-accommodated grain-boundary sliding. This mechanism was accompanied in parallel by relatively small amounts of unaccommodated grain-boundary sliding. Cavitation was not observed.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Scholz, H. and Thiemann, K. H.Solid State Commun. 23, 815819 (1977).Google Scholar
2Westwood, A.D. and Notis, M.R.J. Am. Ceram. Soc. 74 (6), 12261239 (1991).Google Scholar
3Berman, R.Thermal Conduction in Solids (Clarendon, Oxford, 1978).Google Scholar
4Thorp, J. S.Evans, D.Al-Naief, M., and Akhtaruzzman, M.J. Mater. Sci. 25, 49654971 (1990).Google Scholar
5Tummala, R. R.Am. Ceram. Soc. Bull. 67 (4), 752758 (1988).Google Scholar
6Slack, G. A.J. Phys. Chem. Solids 34, 321 (1973).Google Scholar
7Boch, P.Glandus, J. C.Jarrige, J.LeCompte, J. P. and Mexmin, J.Ceram. Int. 8 (1), 3440 (1982).CrossRefGoogle Scholar
8DeWith, G. and Hattu, N.J. Mater. Sci. 18, 503507 (1983).CrossRefGoogle Scholar
9Rafaniello, W.Plichta, M. R. and Virkar, A. V.J. Am. Ceram. Soc. 66 (4), 272276 (1983).CrossRefGoogle Scholar
10Kuo, S. Y.Virkar, A. V. and Rafaniello, W.J. Am. Ceram. Soc. 70 (6), C125 (1987).Google Scholar
11Spivak, I.I.Rystov, V.N. and Lazarenko, V.D.Poroshk. Metall. (Kiev) 2, 7682 (1976).Google Scholar
12Spivak, I.I. and Rystov, V.V.Neorg. Mater. 13 (2), 262265 (1977).Google Scholar
13Nishida, T. and Nishikawa, T.Yogyo Kyokaishi 88 (11), 680686 (1980).Google Scholar
14Jou, Z. C. and Virkar, A. V.J. Am. Ceram. Soc. 73 (7), 19281935 (1990).Google Scholar
15Carter, C.H. Jr. , Davis, R.F. and Bentley, J.J. Am. Ceram. Soc. 67 (11), 409417 (1984).Google Scholar
16Lane, J.E. “Kinetics and Mechanisms of Creep in Sintered Alpha Silicon Carbide,” Ph.D. Dissertation North Carolina State University, Raleigh, NC, June 1987.Google Scholar
17Carter, C. H. Jr., Stone, C. A.Davis, R. F. and Schaub, D. R.Rev. Sci. Instrum. 51 (10), 13521357 (1980).Google Scholar
18Sanjurjo, J. A. E. Lopez-Cruz, Vogl, P. and Cardona, M.Phys. Rev. B28, 4579 (1983).Google Scholar
19Jonas, J.J. CSellars, M. and Mc, W.J.Tegart, G.Metall. Rev. 130, 124 (1969).Google Scholar
20Ishida, Y.J. Phys. 51 (1), C113 (1990).Google Scholar
21Hagege, S.Ishida, Y. and Tanaka, S.J. Phys. 45, C5189 (1988).Google Scholar
22Denanot, M. F. and Rabier, J.J. Mater. Sci. 24, 15941598 (1989).Google Scholar
23McKernan, S. and Carter, C. B. in Advanced Electronic Packaging Materials, edited by Barfknecht, A. T.Partridge, J. P.Chen, C. J. and Li, C.Y. (Mater. Res. Soc. Symp. Proc. 167, Pittsburgh, PA, 1990), pp. 289294.Google Scholar
24Westwood, A. D. and Notis, M. R. in Advanced Electronic Packaging Materials, edited by Barfknecht, A.T.Partridge, J.P.Chen, C. J., and Li, C.Y. (Mater. Res. Soc. Symp. Proc. 167, Pittsburgh, PA, 1990), pp. 295300.Google Scholar
25Harris, J.H.Youngman, R. A. and Teller, R. G.J. Mater. Res. 5, 17631773 (1990).CrossRefGoogle Scholar
26Denanot, M. F. and Rabier, J.Mater. Sci. Eng. A109, 157160 (1989).CrossRefGoogle Scholar
27McLean, D.J. Inst. Met. 80 (6), 507519 (1951-1952).Google Scholar
28Lange, F.F.Clarke, D.R. and Davis, B.I.J. Mater. Sci. 15, 611615 (1980).Google Scholar
29Lifshitz, I. M.Sov. Phys. JETP 17 (4), 909920 (1963).Google Scholar
30Nabarro, F. R. N.Rep. Conf. Strength Solids, 1947, 7590 (1948).Google Scholar
31Nabarro, F.R.N.Philos. Mag. 16 (2), 231237 (1967).Google Scholar
32Herring, C.J. Appl. Phys. 21 (5), 437445 (1950).Google Scholar
33Coble, R.L.J. Appl. Phys. 34 (6), 16791682 (1963).CrossRefGoogle Scholar
34Rachinger, W. A.J. Inst. Met. 81, 1412 (1952-1953).Google Scholar
35Gifkins, R.C.J. Aust. Inst. Met. 18 (3), 137145 (1973).Google Scholar
36Komeya, K. and Inoue, H.J. Mater. Sci. 4, 10451050 (1969).Google Scholar