Published online by Cambridge University Press: 31 January 2011
Implantation of nitrogen at 150 KeV and a dose of 1 ⊠ 1018/cm2 into (110) silicon results in the formation of an amorphized layer at the mean ion range, and a deeper tail of nitrogen ions. Annealing studies show that the amorphized layer recrystallizes into a continuous polycrystalline Si3N4 layer after annealing for 1 h at 1200 °C. In contrast, the deeper nitrogen fraction forms discrete precipitates (located 1μm below the wafer surface) in less than 1 min at this temperature. The arcal density of these precipitates is 5 ⊠ 107/cm2 compared with a nuclei density of 1.6 ⊠ 105/cm2 in the amorphized layer at comparable annealing times. These data suggest that the nucleation step limits the recrystallization rate of amorphous silicon nitride to form continuous buried nitride layers. The nitrogen located within the damaged crystalline silicon lattice precipitates very rapidly, yielding semicoherent crystallites of β–Si3N4.