Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-30T21:33:49.452Z Has data issue: false hasContentIssue false

Kinetics of structural relaxations in the glassy semiconductor a–Se

Published online by Cambridge University Press:  31 January 2011

S. O. Kasap
Affiliation:
Metallurgical Laboratories, Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada. S7N 0W0
S. Yannacopoulos
Affiliation:
Materials and Devices Laboratories, Department of Electrical Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N 0W0
Get access

Abstract

It has recently been suggested that the rate of structural relaxations in amorphous chalcogenide glasses is inversely proportional to the viscosity and the latter obeys the Vogel-Tammann-Fulcher relationship. In this paper, Differential Scanning Calorimetry (DSC) and Thermomechanical Analysis (TMA) experiments examining the glass transformation in a–Se are reported which have been carried out over as wide range of heating rates as practically possible on the available instrumentation covering more than three decades of heating rate variation from r = 0.05 °C/min to r = 100 °C/min. The observed glass transformation temperatures in DSC and TMA ranged from 30 °C to 65 °C. The a–Se films were vapor deposited by thermal evaporation onto A1 substrates (at ∼70 °C) under identical conditions and well aged over an equal period of time so that all the films had an identical initial structure. Analysis of the glass transition temperature, Tg, vs heating rate, r, data obtained from the DSC endotherms shows that the structural relaxation rate is non-Arrhenius and can be described reasonably well by a Vogel expression of the form exp[–A/(TT0)] which may have a weak structure dependent factor of the form exp[–c(HHE)] where (HHE) is the deviation of the structural enthalpy from its equilibrium value. It was found that a phenomenological single parameter Vogel description for the retardation time over the whole temperature range accessed leads to A and T0 values comparable with those obtained from the Vogel analysis of the viscosity-temperature data of Cukiermann and Uhlmann (1972), as well as the recent thermomicrohardness data of the present authors (1989). Furthermore, it is shown that the wide differences reported for the crystallization activation energy in a–Se can be readily interpreted by a viscosity limited crystallite growth rate. The Vogel interpretation is also found to be consistent with the temperature dependence of the mean dielectric relaxation time in the Debye loss observed by Abkowitz, Pochan, and Pochan (1980). It is suggested that in the elemental chalcogenide a–Se, the relaxation rate of enthalpy, microhardness, and dielectric polarization, as well as the crystallization rate, all scale inversely with the viscosity. TMA measurements, on the other hand, although still interpretable in terms of a Vogel behavior, did not indicate a softening behavior which paralleled the viscosity.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Ela, A. H. Abou El, Elmously, M. K., and Abdu, K. S., J. Mater. Sci. 15, 871 (1980).CrossRefGoogle Scholar
2Kim, K. S. and Turnbull, D., J. Appl. Phys. 44, 5237 (1973).CrossRefGoogle Scholar
3Felty, E. J., “New photoconductors for xerography” in Reprographie 2-Bericht uber den 2: International Congress on Reprography, October 1967, Cologne, Germany, pp. 4047.Google Scholar
4Tammann, G. and Hesse, N., Z. Anorg. Chem. 156, 245 (1926).CrossRefGoogle Scholar
5Tammann, G. and Elbrachter, A., Z. Anorg. Chem. 207, 268 (1932).CrossRefGoogle Scholar
6Fulcher, H., J. Am. Ceram. Soc. 8, 330 (1925).Google Scholar
7Vogel, H., Phys. Z. 22 645 (1921).Google Scholar
8Cukiermann, M. and Uhlmann, D.R., J. Non-Cryst. Solids 12, 199 (1973).CrossRefGoogle Scholar
9Kasap, S.O. and Juhasz, C., J. Mater. Sci. 21, 1329 (1986).CrossRefGoogle Scholar
10Mahadevan, S., Giridhar, A., and Singh, A. K., J. Non-Cryst. Solids 88, 11 (1986).CrossRefGoogle Scholar
11Bergman, C., Avramov, I., Zahra, C. Y., and Mathieu, J. C., J. NonCryst. Solids 70, 367 (1985).CrossRefGoogle Scholar
12Larmagnac, J. P., Grenet, J., and Michon, P., J. Non-Cryst. Solids 45, 157 (1981).CrossRefGoogle Scholar
13Matsuura, M. and Suzuki, K., J. Mater. Sci. 14, 395 (1979).CrossRefGoogle Scholar
14Turnbull, D. and Bagley, B.G., in “Treatise on Solid State Chemistry, Vol. 5: Changes of State”, edited by Hannay, N. B. (Plenum Press, New York, 1975), Ch. 10, pp. 513554 and references therein.Google Scholar
15Saito, S., in “Treatise on Solid State Chemistry, Vol. 5: Changes of State”, edited by Hannay, N. B. (Plenum Press, New York, 1975) Ch. 11, pp. 555592 and references therein.Google Scholar
16Ritland, H. N., J. Am. Ceram. Soc. 37, 370 (1954).CrossRefGoogle Scholar
17Bartenev, G. M. and Zukianov, A. I., Zh. Fiz. Khim. (USSR) 29, 1486 (1955).Google Scholar
18Kovacs, A.J., Adv. Poly. Sci. 3, 394 (1963).Google Scholar
19Moynihan, C.T., Easteal, A.J., Wilder, J., and Tucker, J., J. Phys. Chem. 78, 2673 (1974).CrossRefGoogle Scholar
20DeBolt, M. A., Easteal, A.J., Macedo, P. B., and Moynihan, C., J. Am. Ceram. Soc. 59, 16 (1976) and references therein.CrossRefGoogle Scholar
21Hutchinson, J. M. and Kovacs, A. J., J. Polym. Sci. 14, 1575 (1976).Google Scholar
22Kovacs, A. J. and Hutchinson, J.N., J. Polym. Sci. 17, 2031 (1979).Google Scholar
23Grenet, J., Larmagnac, J. P., Michon, P., and Vautier, C., Thin Solid Films 76, 53 (1981).CrossRefGoogle Scholar
24Grenet, J. and Larmagnac, J.P., Thin Solid Films 110, 39 (1983).CrossRefGoogle Scholar
25Abkowitz, M., Polymer Eng. Sci. 24, 1149 (1984) and references therein.Google Scholar
26Abkowitz, M., J. Non-Cryst. Solids 66, 315 (1984).Google Scholar
27Avramov, I., Grantscharova, E., and Gutzow, I., J. Non-Cryst. Solids 91, 386 (1987).CrossRefGoogle Scholar
28MacMillan, J.A., J. Chem. Phys. 42, 3497 (1965).CrossRefGoogle Scholar
29Li, J. C. M., Metall. Trans. A 9A, 1353 (1978).Google Scholar
30Chang, B.T.A. and Li, J.C.M., J. Mater. Sci. 15, 1364 (1980).Google Scholar
31Rasmussen, D. H. and Mackenzie, A. P., J. Phys. Chem. 75, 967 (1971).CrossRefGoogle Scholar
32Chen, H.S., J. Non-Cryst. Solids 27, 257 (1978).CrossRefGoogle Scholar
33Chen, H.S., J. Non-Cryst. Solids 29, 223 (1978).CrossRefGoogle Scholar
34Colemenero, J. and Barandiaran, J. M., J. Non-Cryst. Solids 30, 263 (1978).CrossRefGoogle Scholar
35Shelby, J.E., J. Non-Cryst. Solids 34, 111 (1979).CrossRefGoogle Scholar
36Chen, H. S., J. Non-Cryst. Solids 46, 289 (1981).CrossRefGoogle Scholar
37Weber, P. J. and Savage, J. A., J. Mater. Sci. 16, 763 (1981).CrossRefGoogle Scholar
38Henderson, D. W. and Ast, D.G., J. Non-Cryst. Solids 64, 43 (1984).CrossRefGoogle Scholar
39Kasap, S.O. and Yannacopoulos, S., to appear in J. Non-Cryst. Solids (1989).Google Scholar
40Kasap, S.O. and Juhasz, C., J. Chem. Soc. Faraday Trans. 2, 81, 811 (1985).CrossRefGoogle Scholar
41Berry, G. C. and Fox, T. G., Adv. Poly. Sci. 5, 261 (1968) and references therein.CrossRefGoogle Scholar
42Cukiermann, M., Lane, J.W., and Uhlmann, D. R., J. Chem. Phys. 59, 3639 (1984).CrossRefGoogle Scholar
43Abkowitz, M., Pochan, D. F., and Pochan, J. M., J. Appl. Phys. 51, 1539 (1980).CrossRefGoogle Scholar
44Stephens, R.B., Phys. Rev. B 30, 5195 (1984).CrossRefGoogle Scholar
45Grenet, J., Larmagnac, J. P., and Michon, P., Thin Solid Films 67, L17 (1980).CrossRefGoogle Scholar
46Michon, P., Atmani, H., and Vautier, C., Phys. Stat. Sol. (a) 85, 399 (1984).CrossRefGoogle Scholar
47Sakai, N. and Kajiwara, T., Jpn. J. Appl. Phys. 21, 1383 (1982).CrossRefGoogle Scholar
48Kotkata, M.F. and Mahmud, E. A., Mater. Sci. & Eng. 54, 163 (1982).CrossRefGoogle Scholar
49Thornburg, D. D., Thin Solid Films 37, 215 (1976).CrossRefGoogle Scholar
50Hamada, S., Sato, T., and Shirai, T., Bull. Chem. Soc. Jpn. 40, 864 (1967).CrossRefGoogle Scholar
51Janjua, M. B. I., Toguri, J. M., and Cooper, C. C., Can. J. Phys. 49, 475 (1971).CrossRefGoogle Scholar
52Brower, W. E. and Capo, D. J., J. Vac. Sci. Technol. 13, 1066 (1976).CrossRefGoogle Scholar
53Kawarada, M. and Nishina, Y., Jpn. J. Appl. Phys. 16, 1525 (1977).CrossRefGoogle Scholar
54Clement, R., Carballes, J. C., and Cremoux, B. de, J. Non-Cryst. Solids 15, 505 (1974).CrossRefGoogle Scholar
55Kinoshita, A., Nakano, T., and Aono, T., Jpn. J. Appl. Phys. 19, 2361 (1980).CrossRefGoogle Scholar
56Gross, G., Stephens, R.B., and Turnbull, D., J. Appl. Phys. 48, 1139 (1977).CrossRefGoogle Scholar