Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-14T19:24:59.311Z Has data issue: false hasContentIssue false

Lanthanum doping of YBa2Cu3Ox

Published online by Cambridge University Press:  31 January 2011

D. J. L. Hong
Affiliation:
Materials Research Center, Lehigh University, Bethlehem, Pennsylvania 18015
A. Mehta
Affiliation:
Materials Research Center, Lehigh University, Bethlehem, Pennsylvania 18015
D. M. Smyth
Affiliation:
Materials Research Center, Lehigh University, Bethlehem, Pennsylvania 18015
E. K. Chang
Affiliation:
The BOC Group, Inc., Technical Center, Murray Hill, New Jersey 07974
M. J. Kirschner
Affiliation:
The BOC Group, Inc., Technical Center, Murray Hill, New Jersey 07974
Get access

Abstract

A wide variety of cation substitutions have been tried in the 1-2-3 compound, YBa2Cu3Ox, in the hope that its superconducting properties can be improved. While significant improvement has not been achieved, the response of the material to such substitutions can still be helpful in understanding its defect chemistry. In this paper, we report on measurements of the equilibrium oxygen content, by thermogravimetry, and the electrical conductivity of YBa2−zLazCu3Ox, with z = 0, 0.1, and 0.2. The results are consistent with the view that the stoichiometric composition for this system, YBa2Cu3O6, is a highly acceptor-doped material.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Liang, R., Inaguma, Y., Takagi, Y., and Nakamura, T., Jpn. J. Appl. Phys. 26, L1150 (1987).Google Scholar
2Tokiwa, A., Syono, Y., Kikuchi, M., Suzuki, R., Kajitani, T., Kobayashi, N., Sasaki, T., Nakatsu, O., and Muto, Y., Jpn. J. Appl. Phys. 27, L1009 (1988).CrossRefGoogle Scholar
3Uwb, H., Sakudo, T., Asano, H., Han, T., Yagi, K., Harada, R., Iha, M., and Yokoyama, Y., Jpn. J. Appl. Phys. 27, L577 (1988).Google Scholar
4Huang, T. C., Tokura, Y., Torrance, J. B., Nazzal, A.I., and Karimi, R., Appl. Phys. Lett. 52 (22), 1901 (1988).Google Scholar
5Chang, E. K., Hong, D. J. L., Mehta, A., and Smyth, D. M., Mater. Lett. 6, 251 (1988).CrossRefGoogle Scholar
6Chan, N. H., Sharma, R. K., and Smyth, D. M., J. Am. Ceram. Soc. 65, 167 (1982).CrossRefGoogle Scholar
7Kishio, K., Shimoyama, J., Hasegawa, T., Kitazawa, K., and Fueki, K., Jpn. J. Appl. Phys. 26, L1228 (1987).Google Scholar
8Specht, E.D., Sparks, C. J., Dhere, A. G., Brynestad, J., Cavin, O.B., Kroeger, D. M., and Oye, H. A., Phys. Rev. B 37, 7426 (1988).CrossRefGoogle Scholar
9Lindemer, T. B., Hunley, J. F., Gates, J. E., Sutton, A. L., Brynestad, J., Hubbard, C. R., and Gallagher, P. K., J. Am. Ceram. Soc. 72, 1775 (1989).CrossRefGoogle Scholar
10Santoro, A., Miraglia, S., Beech, F., Sunshine, S. A., Murphy, D.W., Schneemeyer, L. F., and Waszczak, J.V., Mater. Res. Bull. 22, 1007 (1987).Google Scholar
11Mehta, A. and Smyth, D. M., in Non-Stoichiometric Compounds: Surfaces, Grain Boundaries, and Structural Defects, edited by Nowotny, J. and Weppner, W. (Kluwer Acad. Publ., Dordrecht, 1989), pp. 509520.CrossRefGoogle Scholar
12Smyth, D. M., Prog. Solid State Chem. 15, 145 (1984).CrossRefGoogle Scholar
13Yan, M. F., Rhodes, W.W., and Gallagher, P. K., J. Appl. Phys. 63, 821 (1988).Google Scholar