Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-14T19:02:33.435Z Has data issue: false hasContentIssue false

Laser interferometric measurement of the surface tension of thin foils

Published online by Cambridge University Press:  31 January 2011

Gregory A. Jablonski
Affiliation:
Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609–2280
Albert Sacco Jr.
Affiliation:
Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609–2280
Get access

Abstract

A technique has been developed to measure the surface tension of thin foils under their own vapor pressure. The zero creep method of surface tension measurement is used in conjunction with laser interferometry. This technique allows very small sample strains to be measured. Sample length changes of the order of 0.3 μm were measured with the laser interferometer. The sensitivity of the laser interferometer/zero creep system allows the surface tension to be measured much closer to the Tammann temperature, which is approximately one-half the melting temperature (≍1/2 Tm) of the material. The system has been tested on thin Sn foils in air, and on thin Al and Ni foils under their own vapor pressure (vacuum).

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Udin, H., Shaler, A. J., and Wolf, J., Trans. AIME 185, 186 (1949).Google Scholar
2Hondros, E. D., Proc. Royal Soc. A286, 479 (1965).Google Scholar
3Tammann, G., Z. Angew. Chemie. 39, 869 (1920).CrossRefGoogle Scholar
4Murr, L. E., Inal, O. T., and Wong, G. I., Proc. 5th Int. Materials Symposium, edited by Thomas, G., Fulrath, R. M., and Fisher, R. M. (Univ. of California Press, Berkeley, CA, 1972), p. 417.Google Scholar
5Bauer, C. E., Speiser, R., and Hirth, J. P., Metall. Trans. A 7A, 75 (1976).CrossRefGoogle Scholar
6Roth, T. A., Mater. Sci. and Eng. 18, 183 (1975).CrossRefGoogle Scholar
7Hayward, E. R. and Greenough, A. P., J. of Inst. of Metals 88, 217 (1960).Google Scholar
8Buttner, F. H., Funk, E. R., and Udin, H., J. Phys. Chem. 56, 657 (1952).CrossRefGoogle Scholar
9Hondros, E. D., Acta Metall. 16, 1377 (1968).CrossRefGoogle Scholar
10Hondros, E. D. and Gladman, D., Surf. Sci. 9, 471 (1968).Google Scholar
11Jablonski, G. A., Sacco, A. Jr, and Gately, R. A., Novel Materials in Heterogeneous Catalysis, edited by Terry, R., Baker, K., and Murrell, Larry L., ACS Symposium Series#437 (American Chemical Society, Washington, DC, 1990), p. 302.CrossRefGoogle Scholar
12Michelson, A. A., Philos. Mag. 13, 236 (1882).CrossRefGoogle Scholar
13Dieter, G. E., Mechanical Metallurgy, 2nd ed. (McGraw-Hill Book Co., New York, 1976), p. 453.Google Scholar
14McLean, M., J. Mater. Sci. 8, 571 (1973).CrossRefGoogle Scholar
15Westmacott, K. H., Smallman, R. E., and Dobson, P. S., Met. Sci. J. 2, 177 (1968).CrossRefGoogle Scholar
16Vermaak, J. S. and Kuhlmann-Wilsdorf, D., J. Phys. Chem. 72, 4150 (1968).CrossRefGoogle Scholar
17Clark, E. A., Yeske, R., and Birnbaum, H. K., Metall. Trans. A 11, 1903 (1980).CrossRefGoogle Scholar
18Ehrburger, P. and Donnet, J. B., Philos. Trans. R. Soc. London A294, 495 (1980).Google Scholar
19Kingery, W. D., Bowen, H. K., and Uhlmann, D. R., Introduction to Ceramics, 2nd ed. (John Wiley & Sons, New York, 1976), p. 707.Google Scholar
20Simon, G. and Bunsell, A. R., J. Mater. Sci. 19, 3658 (1984).CrossRefGoogle Scholar