Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-13T01:43:42.237Z Has data issue: false hasContentIssue false

Low Energy Ion Impact-enhanced Growth of Cubic Boron Nitride in a Supersonic Nitrogen/argon Plasma Flow

Published online by Cambridge University Press:  31 January 2011

D. H. Berns
Affiliation:
Mechanical Engineering Department, Stanford University, Stanford, California 94305-3032
M. A. Cappelli
Affiliation:
Mechanical Engineering Department, Stanford University, Stanford, California 94305-3032
Get access

Abstract

This paper describes the growth and analysis of cubic boron nitride films in a low-density, supersonic nitrogen/argon plasma flow into which boron trichloride gas was injected. Both hexagonal boron nitride (h-BN) and cubic boron nitride (c-BN) were synthesized using this apparatus. Phase selectivity is obtained by applying a relatively low negative bias voltage to the substrate. All of the films described in this paper were grown on {100} silicon wafers at substrate temperatures varying from 400–700 °C. Boron nitride films with greater than 90% cubic phase were successfully synthesized with this method. The films were analyzed using infrared spectroscopy, x-ray photoelectron spectroscopy, and scanning electron microscopy. The volumetric percentages of the hexagonal and cubic phases were determined from model fits to the infrared transmission spectra of the films. X-ray photoelectron spectroscopy provided qualitative evidence for the presence and/or lack of sp2 bonding through the identification of a π-plasmon feature in the spectra. Infrared reflectance spectra are used to provide insight into the growth mechanisms leading to c-BN formation and have revealed features which are not present in the transmission spectra, specifically the 1305 cm−1 LO mode of c-BN and the 1610 cm−1 LO mode of h-BN. The mean ion energies involved with this bias-enhanced chemical vapor deposition (CVD) process are much lower than the ion energies in traditional physical vapor deposition (PVD) processes; however, the ion fluxes (currents) used in this CVD process are at least an order of magnitude higher, resulting in a total momentum transfer to the deposited atoms through ion bombardment that is at least equal to or greater than that reported for many ion-enhanced PVD processes.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Giardina, M. D., Feduzi, R., Manara, a., Spirlet, J. C., Zocchi, M., Depero, L. E., and Mobilio, S., J. Mater. Res. 6, 1838 (1991).CrossRefGoogle Scholar
2.Tarascon, J. M., LePage, Y., Barboux, P., Bagley, B. G., Greene, L. H., McKinnon, W. R., Hull, G. W., Giroud, M., and Hwang, D. M., Phys. Rev. B 37, 9382 (1988).CrossRefGoogle Scholar
3.Maeda, H., Tanaka, Y., Fukutomi, M., and Asano, T., Jpn. J. Appl. Phys. 27, L209 (1988).CrossRefGoogle Scholar
4.von Schnering, H. G., Walz, L., Schwarz, M., Becker, W., Hartweg, M., Popp, T., Hettich, B., Mueller, P., and Kaempf, G., Angewandte Chemie 100, 604 (1988).CrossRefGoogle Scholar
5.Retoux, R., Studer, E., Michel, C., Raveau, B., Fontaine, A., and Dartyge, E., Phys. Rev. 841, 193 (1990).CrossRefGoogle Scholar
6.Blazey, K. W., Müller, K. A., Bednorz, J.B, Berlinger, W., Amoretti, G., Buluggiu, E., Vera, A., and Matacotta, F. C., Phys. Rev. B 36, 7241 (1987).CrossRefGoogle Scholar
7.Buluggiu, E., Vera, A., and Amoretti, G., Physica C 171, 271 (1990).CrossRefGoogle Scholar
8.Buluggiu, E., Vera, A., Giori, D. C., Amoretti, G., and Licci, F., Supercond. Sci. Technol. 4, 595 (1991).CrossRefGoogle Scholar
9. JCPDS Database, International Centre for Diffraction Data, Card No. 40-378.Google Scholar
10. JCPDS Database, International Centre for Diffraction Data, Card No. 42-743.Google Scholar
11. JCPDS Database, International Centre for Diffraction Data, Card No. 39-283.Google Scholar
12.Balerna, A., Buschert, R., Giardina, M. D., Inzaghi, D., and Mobilio, S., J. Phys. (Paris), Collaque C8, Suppl. No. 121, Tome 47, C8-117 (Dec. 1984).Google Scholar
13.Pham, A. Q., Studer, F., Merrien, N., Maignan, A., Michel, C., and Raveau, B., Phys. Rev. B 48, 1249 (1993).CrossRefGoogle Scholar
14.Rao, K. J. and Wong, J., J. Chem. Phys. 81, 4832 (1984).CrossRefGoogle Scholar
15.Krishnaraj, T., Lelovic, M., Eror, N. G., and Balachandran, U., Physica C 246, 271 (1995).CrossRefGoogle Scholar
16.Dallacasa, V. and Feduzi, R., Phys. Lett. A 170, 153 (1992).CrossRefGoogle Scholar
17.Dallacasa, V. and Feduzi, R., Physica C 251, 156 (1995).CrossRefGoogle Scholar
18.Hillebrecht, F. U., Fraxedas, J., Ley, L., Trodahl, H. J., Zaanen, J., Braun, W., Mast, M., Petersem, H., Schaible, M., Bourne, L. C., Pinsukanjana, P., and Zetti, A., Phys. Rev. B 39, 236 (1989).CrossRefGoogle Scholar
18.Mieno, M. and Yoshida, T., Jpn. J. Appl. Phys. 29, L1175 (1990).CrossRefGoogle Scholar
19.Kester, D. J., Aily, K. S., and Davis, R. F., Diamond and Related Materials 3, 332 (1994).CrossRefGoogle Scholar
20.Friedman, T. A., Mirkarimi, P. B., Medlin, D. L., McCarty, K. F., Klaus, E. J., Boehme, D. R., Johnsen, H. A., Mills, M. J., Ottesen, D. K., and Barbour, J. C., J. Appl. Phys. 76 (5), 3088 (1994).CrossRefGoogle Scholar
21.Ikeda, T., Appl. Phys. Lett. 61 (7), 786 (1992).CrossRefGoogle Scholar
22.Sueda, M., Kobayashi, T., Tsukamoto, H., Rokkaku, T., Morimoto, S., Fukay, Y., Yamashita, N., and Wada, T., Thin Solid Films 228, 97 (1993).CrossRefGoogle Scholar
23.McKenzie, D. R., McFall, W. D., Sainty, W. G., Davis, C. A., and Colins, R. E., Diamond Related Mater. 2, 970 (1993).CrossRefGoogle Scholar
24.Nastasi, M. and Mayer, J. W., Mater. Sci. Rep. 6, 1 (1991).CrossRefGoogle Scholar
25.Berns, D. H. and Cappelli, M. A., Appl. Phys. Lett. 68 (19), 2711 (1996).CrossRefGoogle Scholar
26.Semiconductors—Group IV Elements and III-V Compounds, edited by Madelung, O. (Springer-Verlag, New York, 1991), p. 60.Google Scholar
27.Lehmann, A., Schumann, L., and Hubner, K., Phys. Status Solidi (b) 121, 505 (1984).CrossRefGoogle Scholar
28.Phillip, H. R. and Taft, E. A., Phys. Rev. 120 (1), 37 (1960).CrossRefGoogle Scholar
29.Christy, R. W., AJP 40, 1403 (1972).Google Scholar
30.Gielisse, P. J., Mitra, S. S., Plendl, J. N., Griffis, R. D., Mansur, L. C., Marshall, R., and Pascoe, E. A., Phys. Rev. 155 (3), 1039 (1967).CrossRefGoogle Scholar
31.Geick, R., Perry, C. H., and Rupprecht, G., Phys. Rev. 146 (2), 543 (1966).CrossRefGoogle Scholar
32.Sanjorjo, J. A., Lopez-Cruz, E., Vogl, P., and Cardona, M., Phys. Rev. B 28 (8), 4579 (1983).CrossRefGoogle Scholar
33.Trehan, R., Lifshitz, Y., and Rabalais, J. W., J. Vac. Sci. Technol. A8 (6), 4026 (1990).Google Scholar
34.Handbook of X-Ray Photoelectron Spectroscopy, edited by Wagner, C. G. (Perkin-Elmer, Eden Prairie, MN, 1979).Google Scholar
35.Mirkarimi, P. B., McCarty, K. F., Medlin, D. L., Wolfer, W. G., Friedmann, T. A., Klaus, E. J., Cardinale, G. F., and Howitt, D. G., J. Mater. Res. 9, 2925 (1994).CrossRefGoogle Scholar
36.Robertson, J., Diamond Related Mater. 5, 519 (1996).CrossRefGoogle Scholar
37.Yoshida, T., Diamond Related Mater. 5, 501 (1996).CrossRefGoogle Scholar
38.Reinke, S., Kuhr, M., and Kulisch, W., Diamond Related Mater. 5, 508 (1996).CrossRefGoogle Scholar
39.Kester, D. J., Ailey, K. S., Davis, R. F., and More, K. L., J. Mater. Res. 8, 1213 (1993).CrossRefGoogle Scholar
40.Ichiki, T., Amagi, S., and Yoshida, T., J. Appl. Phys. 79 (8), 4381 (1996).CrossRefGoogle Scholar
41.Mendez, J. M., Muhl, S., Andrade, E., Cota-Araiza, L., Farias, M., and Soto, G., Diamond Related Mater. 3, 831 (1994).CrossRefGoogle Scholar
42.Lieberman, M. A. and Lichtenberg, A. J., Principles of Plasma Discharges and Materials Processing (John Wiley and Sons, Inc., New York, 1994), p. 171.Google Scholar
43. “IONTRANS,” Stanford University.Google Scholar
44.Kester, D. J. and Messier, R., J. Appl. Phys. 72, 504 (1992).CrossRefGoogle Scholar
45.Medlin, D. L., Friedmann, T. A., Mirkarimi, P. B., Cardinale, G. F., and McCarty, K. F., J. Appl. Phys. 79 (7), 3567 (1996).CrossRefGoogle Scholar