Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-15T01:45:39.404Z Has data issue: false hasContentIssue false

Low temperature/low pressure hydrothermal synthesis of barium titanate: Powder and heteroepitaxial thin films

Published online by Cambridge University Press:  03 March 2011

A.T. Chien
Affiliation:
Materials Research Laboratory and Materials Department, University of California, Santa Barbara Santa Barbara. California 93106
J.S. Speck
Affiliation:
Materials Research Laboratory and Materials Department, University of California, Santa Barbara Santa Barbara. California 93106
F.F. Lange
Affiliation:
Materials Research Laboratory and Materials Department, University of California, Santa Barbara Santa Barbara. California 93106
A.C. Daykm
Affiliation:
Materials Research Laboratory and Materials Department, University of California, Santa Barbara Santa Barbara. California 93106
C.G. Levi
Affiliation:
Materials Research Laboratory and Materials Department, University of California, Santa Barbara Santa Barbara. California 93106
Get access

Abstract

Barium titanate powder and heteroepitaxial thin films were successfully produced by hydrothermal routes at ambient pressure and temperatures less than 100 °C. This processing method provides a simple low temperature route for producing epitaxied barium titanate thin films on single-crystal SrTiO3 substrates and powders which could also be extended to other systems. A dissolution/reprecipitation growth mechanism also was proposed for the formation of barium titanate by this route using previously published aqueous stability diagrams. Repeated hydrothermal treatments improved film thickness and surface coverage at the expense of increased surface roughness.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Hennings, D., Int. J. High Tech. Ceram. 3, 91 (1987).CrossRefGoogle Scholar
2Newnham, R. E., Rep. Prog. Phys. 52, 123 (1989).CrossRefGoogle Scholar
3Cross, L. E., Ceram. Bull. 63, 586 (1984).Google Scholar
4Yeh, Y. C. and Tseng, T. Y., J. Mater. Sci. Lett. 7, 766 (1988).CrossRefGoogle Scholar
5Ishihara, T., Kometani, K., Mixuhara, Y., and Takita, Y., J. Am. Ceram. Soc. 75, 613 (1992).CrossRefGoogle Scholar
6Zhingang, Z. and Gang, Z., Ferroelectrics 101, 43 (1990).CrossRefGoogle Scholar
7Chaput, F. and Boilot, J. P., J. Am. Ceram. Soc. 73, 942 (1990).CrossRefGoogle Scholar
8Kiss, K., Magder, J., Vukasovich, M. S., and Lockhart, R. J., J. Am. Ceram. Soc. 49, 291 (1966).CrossRefGoogle Scholar
9Shintani, Y. and Tada, O., J. Appl. Phys. 41, 2376 (1970).CrossRefGoogle Scholar
10Xu, J. J., Shaikh, A. S., and Vest, R. W., IEEE Trans. Ultrasonics, Ferrolectrics and Frequency Control 36, 407 (1989).Google Scholar
11Dawson, W., Ceram. Bull. 67, 1673 (1988).Google Scholar
12Roy, R. and Tuttle, O. F., Phys. Chem. Earth 1, 138 (1956).CrossRefGoogle Scholar
13Yoo, S. E., Yoshimura, M., and Sōmiya, S., J. Mater. Sci. Lett. 8, 530 (1989).CrossRefGoogle Scholar
14Baughman, R. J., J. Cryst. Growth 112, 753 (1991).CrossRefGoogle Scholar
15Ballman, A. A. and Laudise, R. A., in The Art and Science of Growing Crystals, edited by Gilman, J. J. (John Wiley, New York, 1963).Google Scholar
16Lilley, E. and Wusirika, R. R., US Patent No. 4764493 (August 1988).Google Scholar
17Vivekanandan, R. and Kutty, T. R.N., Powder Technol. 57, 181 (1989).CrossRefGoogle Scholar
18Yoshimura, M., Yoo, S. E., Hayashi, M., and Ishizawa, N., Jpn. J. Appl. Phys. 28, L2007 (1989).CrossRefGoogle Scholar
19Bacsa, R. R., Dougherty, J. P., and Pilione, L. J., Appl. Phys. Lett. 63, 23 (1993).CrossRefGoogle Scholar
20Dutta, P. and Gregg, J. R., Chem. Mater. 4, 843 (1992).CrossRefGoogle Scholar
21Hayashi, M., Ishizawa, N., Yoo, S-E., and Yoshimura, M., Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi 98, 930 (1990).CrossRefGoogle Scholar
22Ishizawa, N., Banno, H., Hayashi, M., Yoo, S. E., and Yoshimura, M., Jpn. J. Appl. Phys. 29, 2467 (1990).CrossRefGoogle Scholar
23Kajyoshi, K., Ishizawa, N., and Yoshimura, M., Jpn. J. Appl. Phys. 30, L120 (1991).CrossRefGoogle Scholar
24Zhao, L., Chien, A. T., Lange, F. F., and Speck, J. S., unpublished.Google Scholar
25K. Osseo-Asare, Arriagada, F. J., and Adair, J. H., in Ceramic Transactions, Vol. 1, Ceramic Powder Science II, edited by Messing, G. L., Fuller, E. R. Jr., and Hausner, H. (American Ceramic Society, Westerville, OH, 1988), p. 47.Google Scholar
26Bacsa, R., Ravindranathan, P., and Dougherty, J. P., J. Mater. Res. 7, 423 (1992).CrossRefGoogle Scholar
27Bogush, G. H. and Zukoski, C. F. IV, in Ultrastructure Processing of Advanced Ceramics, edited by Mackenzie, J. D. and Ulrich, D. R. (John Wiley & Sons, Inc., New York, 1988), p. 477.Google Scholar
28Stober, W., Fink, A., and Bohn, E., J. Colloid Interface Sci. 26, 62 (1968).CrossRefGoogle Scholar
29Tiller, W., Jackson, K., Rutter, J., and Chalmers, B., Acta Metall. 1, 428 (1953).CrossRefGoogle Scholar
30Jackson, K., Hunt, J., Uhlmann, D., and Seward, T., Trans. AIME 236, 149 (1966).Google Scholar
31Uchino, K., Sadanga, E., and Hirose, T., J. Am. Ceram. Soc. 72, 1555 (1989).CrossRefGoogle Scholar
32Frey, M. and Payne, D., Appl. Phys. Lett. 63, 2753 (1993).CrossRefGoogle Scholar