Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-10T12:08:19.876Z Has data issue: false hasContentIssue false

Material aspects of wide temperature range amplifier design in SiC bipolar technologies

Published online by Cambridge University Press:  26 September 2016

Raheleh Hedayati*
Affiliation:
School of Information and Communication Technology, KTH Royal Institute of Technology, Kista 164 40, Sweden
Carl-Mikael Zetterling
Affiliation:
School of Information and Communication Technology, KTH Royal Institute of Technology, Kista 164 40, Sweden
*
a) Address all correspondence to this author. e-mail: rahelehh@kth.se, bellman@kth.se
Get access

Abstract

Silicon carbide (SiC) is the main semiconductor alternative for low loss high voltage devices. The wide energy band gap also makes it suitable for extreme environment electronics, including very high temperatures. Operating integrated electronics at 500–600 °C poses several materials challenges. However, once electronics is available for these high temperatures, the added challenge is designing integrated circuits capable of operating in the entire range from room temperature to 500 °C. Circuit designers have to take into account parameter variations of resistors and transistors, and models are needed for several temperatures. A common circuit design technique to manage parameter variations between different transistors, without wide temperature variations, is to use negative feedback in amplifier circuits. In this paper we show that this design technique is also useful for adapting to temperature changes during operation. Two different amplifier designs in SiC are measured and simulated from room temperature up to 500 °C.

Type
Invited Feature Papers
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Zetterling, C-M.: Integrated circuits in silicon carbide for high-temperature applications. MRS Bull. 40(5), 431 (2015).CrossRefGoogle Scholar
Kimoto, T. and Cooper, J.A.: Fundamentals of Silicon Carbide Technology (Wiley, New York, 2014).Google Scholar
Cressler, J.D. and Mantooth, H.A., eds.: Extreme Environment Electronics (CRC Press, UK, 2013).Google Scholar
Suvanam, S.S., Lanni, L., Malm, B.G., Zetterling, C-M., and Hallén, A.: Effects of 3 MeV protons on 4H-SiC bipolar devices and integrated OR-NOR gate. IEEE Trans. Nucl. Sci., 61, 1772 (2014).Google Scholar
Van Brunt, E., Cheng, L., O'Loughlin, M.J., Richmond, J., Pala, V., Palmour, J., Tipton, C.W., and Scozzie, C.: 27 kV, 20 A 4H-SiC n-IGBTs. Mater. Sci. Forum, 821, 847 (2015).CrossRefGoogle Scholar
Lanni, L., Malm, B.G., Östling, M., and Zetterling, C.M.: ECL-based SiC logic circuits for extreme temperatures. Mater. Sci. Forum 821, 910 (2015).CrossRefGoogle Scholar
Spry, D.J., Neudeck, P.G., Chen, L., Lukco, D., Chang, C.W., and Beheim, G.M.: Prolonged 500 °C demonstration of 4H-SiC JFET ICs with two-level interconnect. IEEE Electron Device Lett. 37(5), 625 (2016).Google Scholar
Young, R.A.R., Clark, D., Cormack, J.D., Murphy, A.E., Smith, D.A., Thompson, R.F., Ramsay, E.P., and Finney, S.: High Temperature Digital and Analogue Integrated Circuits in Silicon Carbide. Mater. Sci. Forum 740, 1065 (2013).Google Scholar
Ghandi, R., Chen, C-P., Yin, L., Zhu, X., Yu, L., Arthur, S., Ahmad, F., and Sandvik, P.: Silicon Carbide Integrated Circuits with Stable Operation over a Wide Temperature Range. IEEE Electron Device Lett. 35, 1206 (2014).CrossRefGoogle Scholar
Okojie, R.S., Lukco, D., Nguyen, V., and Savrun, E.: 4H-SiC piezoresistive pressure sensors at 800 °C with observed sensitivity recovery. IEEE Electron Device Lett. 36(2), 174 (2015).Google Scholar
Gaska, R., Gaevski, M., Deng, J., Jain, R., Simin, G., and Shur, M.: Novel AllnN/GaN integrated circuits operating up to 500 °C. European Solid State Device Research Conference (ESSDERC), 142 (2014).Google Scholar
Ohta, H., Kaneda, N., Horikiri, F., Narita, Y., Yoshida, T., Mishima, T., and Nakamura, T.: Vertical GaN p–n junction diodes with high breakdown voltages over 4 kV. IEEE Electron Device Lett. 36(11), 1180 (2015).CrossRefGoogle Scholar
Chu, R., Cao, Y., Chen, M., Li, R., and Zehnder, D.: An experimental demonstration of GaN CMOS technology. IEEE Electron Device Lett. 37(3), 269 (2016).Google Scholar
Porter, L.M.: Wide Band Gap Materials and New Developments (Research Signpost, India, 2006); pp. 187208.Google Scholar
Kragh-Buetow, K.C., Okojie, R.S., Lukco, D., and Mohney, S.E.: Characterization of tungsten–nickel simultaneous ohmic contacts to p- and n-type 4H-SiC. Semicond. Sci. Technol. 30(10), 105019 (2015).Google Scholar
Lanni, L., Malm, B.G., Zetterling, C-M., and Östling, M.: A 4H-SiC bipolar technology for high-temperature integrated circuits. J. Microelectron. Electron. Packag. 10, 155 (2013).Google Scholar
Lanni, L., Malm, B.G., Ostling, M., and Zetterling, C-M.: 500 bipolar integrated or/NOR gate in 4H-SiC. IEEE Electron Device Lett. 34(9), 1091 (2013).CrossRefGoogle Scholar
Hedayati, R., Lanni, L., Rusu, A., and Zetterling, C-M.: Wide temperature range integrated bandgap voltage references in 4H–SiC. IEEE Electron Device Lett. 37(2), 146 (2016).Google Scholar
Ohshima, T., Yokoseki, T., Murata, K., Matsuda, T., Mitomo, S., Abe, H., Makino, T., Onoda, S., Hijikata, Y., Tanaka, Y., Kandori, M., Okubo, S., and Yoshie, T.: Radiation response of silicon carbide metal–oxide–semiconductor transistors in high dose region. Jpn. J. Appl. Phys. 55(1S), 01AD01 (2016).Google Scholar
Nawaz, M., Zaring, C., Onoda, S., Ohshima, T., and Östling, M.: Radiation hardness assessment of high voltage 4H-SiC BJTs. Device Research Conference, 279 (2009).CrossRefGoogle Scholar
Gray, P.R., Hurst, P., Meyer, R.G., and Lewis, S.: Analysis and Design of Analog Integrated Circuits (Wiley, New York, 2001).Google Scholar
Hedayati, R., Lanni, L., Rodriguez, S., Malm, B.G., Rusu, A., and Zetterling, C-M.: A monolithic, 500 °C operational amplifier in 4H-SiC bipolar technology. IEEE Electron Device Lett. 35(7), 693 (2014).Google Scholar
Hedayati, R., Lanni, L., Rusu, A., and Zetterling, C-M.: Wide temperature range integrated amplifier in Bipolar 4H-SiC Technology. Presented at the ESSDERC (2016).Google Scholar
Hedayati, R., Lanni, L., Rusu, A., and Zetterling, C-M.: High temperature integrated amplifier in bipolar 4H-SiC. Presented at Spring MRS 2016, Session EP2 (2016).Google Scholar
Kargarrazi, S., Lanni, L., and Zetterling, C-M.: A study on positive-feedback configuration of a bipolar SiC high temperature operational amplifier. Solid-State Electron. 116, 33 (2016).Google Scholar
Tian, Y., Lanni, L., Rusu, A., and Zetterling, C-M.: Silicon carbide fully differential amplifier characterized up to 500 °C. IEEE Trans. Electron Devices 63(6), 2242 (2016).Google Scholar