Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-14T19:07:44.872Z Has data issue: false hasContentIssue false

Microstructural studies of laser irradiated graphite surfacesa)

Published online by Cambridge University Press:  31 January 2011

J.S. Speck
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
J. Steinbeck
Affiliation:
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
M.S. Dresselhaus
Affiliation:
Department of Physics and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The structure of pulsed laser irradiated graphite surfaces has been elucidated. The pulse fluences range up to 4 J cm−2 with durations no longer than 30 ns. The region exterior to the irradiated spot is littered with ∼0.1 μm diameter carbon spheroids. The boundary region is characterized by both spheroids and torn layers 1–5 μm. in lateral extent. The central region displays carbon spheroids and surface upheavals. The carbon spheroids are attributed to hydrodynamic sputtering of carbon. The surface upheavals and torn carbon layers are attributed to constrained thermal expansion and contraction of the irradiated region. It is estimated that a nearly instantaneous 1000°C temperature change is necessary to cause the observed surface deformation. Pulse fluences in excess of 0.8 J cm−2 cause a thin layer of carbon to melt. This is proven by the fact that the irradiated layer in the solid phase has a turbostratic structure. Electron diffraction experiments and dark-field imaging experiments show that the basal plane grain size of the resolidified material varies from ∼20 Å at the melt threshold to ∼100 Å for samples irradiated with 4.0 J cm−2.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

References

REFERENCES

1Bundy, F. P., in Solid State Physics Under Pressure, edited by Minomura, S. (Reidel, New York, 1986), p. 1.Google Scholar
2Steinbeck, J., Studies of the High Temperature Properties of Graphite and Liquid Carbon Using Pulsed Laser Heating (Ph.D. Thesis, MIT, 1987).Google Scholar
3Bundy, F. P., J. Chem. Phys. 38, 618 (1963).CrossRefGoogle Scholar
4Heremans, J., Oik, C.H., Eesley, G.L., Steinbeck, J., and Dresselhaus, G., Phys. Rev. Lett. 60, 452 (1988).CrossRefGoogle Scholar
5Venkatesan, T., Jacobson, D.C., Gibson, J. M., Elman, B.S., Braunstein, G., and Dresselhaus, M. S., Phys. Rev. Lett. 53, 360 (1984).CrossRefGoogle Scholar
6Malvezzi, A. M., Bloembergen, N., and Huang, C.Y., Phys. Rev. Lett. 57, 146 (1986).CrossRefGoogle Scholar
7Reitze, D. H., Wang, X., Ahn, H., and Downer, M. C., Phys. Rev. B 40, 11986 (1989).Google Scholar
8Braunstein, G., Steinbeck, J., Dresselhaus, M. S., Dresselhaus, G., Elman, B. S., Venkatesan, T., Wilkens, B., and Jacobson, D. C. (Proc. Mater. Res. Soc. Symp.) (Materials Research Society, Pittsburgh, PA, 1986), Vol. 51, p. 233.Google Scholar
9Abrahamson, J., Carbon 12,111 (1974).Google Scholar
10Fauchet, P. M. and Siegman, A. E., Appl. Phys. Lett. 40, 824 (1982).CrossRefGoogle Scholar
11Young, J. F., Preston, J. S., van Driel, H. M., and Sipe, J. E., Phys. Rev. B 27, 1155 (1983).CrossRefGoogle Scholar
12Boyd, I.W., Moss, S. C., Boggess, T. F., and Smirl, A. L., Appl. Phys. Lett. 45, 80 (1984).Google Scholar
13Sipe, J. E., Young, J. F., Preston, J. S., and van Driel, H. M., Phys. Rev. B 27 1141 (1983).CrossRefGoogle Scholar
14Kelly, R. and Rothenberg, J. E., Nucl. Instr. Meth. Phys. B7/8, 755 (1985).Google Scholar
15Musal, H. M., Symp. on Optical Materials for High Power Lasers, Boulder, CO, 159 (1979).Google Scholar
16Dresselhaus, M. S., Dresselhaus, G.Sugihara, K., Spain, I. L., and Goldberg, H.A., Graphite Fibers and Filaments (Springer-Verlag, New York, 1988).CrossRefGoogle Scholar
17Kelly, B.T., Physics of Graphite (Applied Science, London, 1981).Google Scholar
18Tibbetts, G. G. and Beetz, C. P., J. Phys. D 20, 292 (1987).Google Scholar
19Gaponov, S.V., Gudkov, A. A., and Fraerman, A. A., Sov. Tech.Phys. 27 1130 (1982).Google Scholar
20Thomas, S. J., Harrison, R. F., and Figueira, J. F., Appl. Phys. Lett. 40, 200 (1982).CrossRefGoogle Scholar
21Rothenberg, J.E. and Kelly, R., Nucl. Instr. and Meth. Bl, 291 (1984).CrossRefGoogle Scholar
22Cowley, J. M., Diffraction Physics (North-Holland, New York, 1975).Google Scholar
23Warren, B. E., Phys. Rev. 59, 693 (1941).Google Scholar
24Buerger, M. J., Crystal Structure Analysis (Wiley, New York, 1960).Google Scholar
25Warren, B. E., X-Ray Diffraction (Addison-Wesley, Reading, MA, 1969).Google Scholar
26Dresselhaus, M.S. and Steinbeck, J., Tanso 132, 44 (1988).CrossRefGoogle Scholar
27Steinbeck, J., Braunstein, G., Speck, J., Dresselhaus, M.S., Huang, C.Y., Malvezzi, A. M., and Bloembergen, N. (Proc. Mater. Res. Soc. Symp.) (Materials Research Society, Pittsburgh, PA, 1987), Vol. 74, p. 263.Google Scholar