Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-05T04:05:52.641Z Has data issue: false hasContentIssue false

Microstructure observations of silicon carbide nanorods

Published online by Cambridge University Press:  31 January 2011

H. Y. Peng
Affiliation:
Center of Super-Diamond and Advanced Films and Department of Physics and Materials Science, City University of Hong Kong, Hong Kong, People's Republic of China
X. T. Zhou
Affiliation:
Center of Super-Diamond and Advanced Films and Department of Physics and Materials Science, City University of Hong Kong, Hong Kong, People's Republic of China
H. L. Lai
Affiliation:
Center of Super-Diamond and Advanced Films and Department of Physics and Materials Science, City University of Hong Kong, Hong Kong, People's Republic of China
N. Wang
Affiliation:
Center of Super-Diamond and Advanced Films and Department of Physics and Materials Science, City University of Hong Kong, Hong Kong, People's Republic of China
S. T. Lee
Affiliation:
Center of Super-Diamond and Advanced Films and Department of Physics and Materials Science, City University of Hong Kong, Hong Kong, People's Republic of China
Get access

Abstract

The microstructures of β-SiC nanorods synthesized by hot-filament chemical vapor deposition were studied in detail by high-resolution electron microscopy. Two distinct types of nanorods were identified. The longer nanorods (lengths > 0.1 mm) contained globules at their tips and a relatively low density of stacking faults perpendicular to their [111] growth direction. It was also observed that SiC nanorods that grew along [100] direction contained no planar defects. Meanwhile, Ni was found to be an effective catalyst for SiC nanorod growth. The short nanorods (lengths < 50 nm), which contained no globules at their ends, can grow along [111], [100], or [112] direction. The growth of these nanorods was interpreted by a two-dimensional vapor–solid mechanism.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Dai, H.J., Wong, E.W., Lu, Y.Z., Fan, S.S., and Lieber, C.M., Nature 375, 769 (1995).CrossRefGoogle Scholar
2.Yang, P.D. and Lieber, C.M., Science 273, 1836 (1996).CrossRefGoogle Scholar
3.Han, W.Q., Fan, S.S., Li, Q.Q., and Hu, Y.D., Science 277, 1287 (1997).CrossRefGoogle Scholar
4.Wong, E.W., Sheehan, P.E., and Lieber, C.M., Science 277, 1971 (1997).CrossRefGoogle Scholar
5.Morales, A.M. and Lieber, C.M., Science 279, 208 (1998).CrossRefGoogle Scholar
6.Zhang, Y.F., Tang, Y.H., Wang, N., Yu, D.P., Lee, C.S., Bello, I., and Lee, S.T., Appl. Phys. Lett. 72, 1835 (1998).CrossRefGoogle Scholar
7.Zhou, D. and Seraphin, S., Chem. Phys. Lett. 222, 233 (1994).CrossRefGoogle Scholar
8.Han, W.Q., Fan, S.S., Li, Q.Q., Liang, W.J., Gu, B.L., and Yu, D.P., Chem. Phys. Lett, 265, 374 (1997).CrossRefGoogle Scholar
9.Meng, G.W., Zhang, L.D., Mo, C.M., Zhang, S.Y., Qin, Y., Feng, S.P., and Li, H.J., J. Mater. Res. 13, 2533 (1998).CrossRefGoogle Scholar
10.Meng, G.W., Zhang, L.D., Mo, C.M., Zhang, S.Y., Qin, Y., Feng, S.P., and Li, H.J., Solid State Commun. 106, 215 (1998).CrossRefGoogle Scholar
11.Meng, G.W., Zhang, L.D., Qin, Y., Phillipp, F., Qiao, S.R., Guo, H.M., and Zhang, S.Y., Chin. Phys. Lett. 15, 689 (1998).CrossRefGoogle Scholar
12.Bootsma, G.A., Knippenberg, W.F., and Verspui, G., J. Cryst. Growth 11, 297 (1971).CrossRefGoogle Scholar
13.Sharma, N.K. and Williams, W.S., J. Am. Ceram. Soc. 67, 715 (1984).CrossRefGoogle Scholar
14.Milewski, J.V., Gac, F.D., Petrovic, J.J., and Skaggs, S.R., J. Mater. Sci. 20, 1160 (1985).CrossRefGoogle Scholar
15.Kajiwara, M., J. Mater. Sci. 21, 2254 (1986).CrossRefGoogle Scholar
16.Maeda, E., Funahashi, T., and Uchimura, R., J. Ceram. Soc. Jpn. 97, 1505 (1989).CrossRefGoogle Scholar
17.Wang, L., Wada, H., and Allard, L.F., J. Mater. Res. 7, 148 (1992).CrossRefGoogle Scholar
18.Choi, H.J. and Lee, J.G., J. Mater. Sci. 30, 1982 (1995).CrossRefGoogle Scholar
19.Ryan, C.E., Berman, I., Marshall, R.C., Considine, D.P., and Hawley, J.J., J. Cryst. Growth 1, 255 (1967).CrossRefGoogle Scholar
20.Setaka, N. and Inoue, Z., J. Am. Ceram. Soc. 52, 624 (1969).CrossRefGoogle Scholar
21.Addamiano, A., J. Cryst. Growth 58, 617 (1982).CrossRefGoogle Scholar
22.Motojima, S. and Hasegawa, M., J. Cryst. Growth 87, 311 (1988).CrossRefGoogle Scholar
23.Janeway, P.A., Ceram. Ind. 4, 42 (1992).Google Scholar
24.Schoenung, J.M., Ceram. Eng. Sci. Proc. 12, 1983 (1991).Google Scholar
25.McMahon, G., Carpenter, G.J.C, and Malis, T.F., J. Mater Sci. 26, 5655 (1991).CrossRefGoogle Scholar
26.Pickard, S.M., Derby, B., and Feest, E.A., J. Mater. Sci. 26, 6207 (1991).CrossRefGoogle Scholar
27.Zhou, X.T., Wang, N., Lai, H.L., Peng, H.Y., Bello, I., Wong, N.B., Lee, C.S., and Lee, S.T., Appl. Phys. Lett. 74, 3942 (1999).CrossRefGoogle Scholar
28.Huong, P.V., Verma, A.L., Chaminade, J.P., Nganga, L., and Frison, J.C., Mater. Sci. Eng. B 5, 255 (1990).CrossRefGoogle Scholar
29.Huong, P.V., Mater. Sci. Eng. B 11, 235 (1992).CrossRefGoogle Scholar
30.Nakashima, S.I., Wada, A., and Inoue, Z., J. Phys. Soc. Jpn. 56, 3375 (1987).CrossRefGoogle Scholar
31.Campbell, I.H. and Fauchet, P.M., Solid State Commun. 58, 739 (1984).CrossRefGoogle Scholar
32.Nolsson, G. and Nelin, G., Phys. Rev. B: Solid State B 6, 3777 (1972).CrossRefGoogle Scholar
33.Current Topics in Materials Science, edited by Kaldis, E. (North-Holland, Amsterdam, The Netherlands, 1978).Google Scholar
34.Herring, C. and Galt, J.K., Phys. Rev. 85, 1060 (1952).CrossRefGoogle Scholar
35.Webb, W.W. and Forgeng, W.D., Acta Metall. 6, 462 (1958).CrossRefGoogle Scholar
36.Whisker Technology, edited by Levitt, A.P. (Wiley-Interscience, New York, 1970).Google Scholar
37.Massalski, T.B., Okamoto, H., Subramanian, P.R., and Kacprzak, L., Binary Alloy Phase Diagrams, 2nd ed. (ASM international, Materials Park, OH, 1992).Google Scholar
38.Toman, K., Acta Crystallogr. 5, 329 (1952).CrossRefGoogle Scholar
39.Jackson, M.R., Mehan, R.L., Davis, A.M., and Hall, E.L., Metall. Trans. 14A, 355 (1983).CrossRefGoogle Scholar
40.Sears, G.W., Acta Metall. 1, 457 (1953).CrossRefGoogle Scholar
41.Wagner, R.S. and Ellis, W.C., Appl. Phys. Lett. 4, 89 (1964).CrossRefGoogle Scholar
42.Lewis, B., J. Cryst. Growth 21, 29 (1974).CrossRefGoogle Scholar