Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-02T21:29:15.240Z Has data issue: false hasContentIssue false

Modification of the phase transition temperatures in titania doped with various cations

Published online by Cambridge University Press:  31 January 2011

R. Rodríguez-Talavera*
Affiliation:
Departmento de Física, Universidad Autónoma Metropolitana-Iztapalapa Apdo. Postal 55–534, México, D.F. 09340
S. Vargas
Affiliation:
Departmento de Química, Universidad Autónoma Metropolitana-Iztapalapa Apdo. Postal 55–534, México, D.F. 09340
R. Arroyo-Murillo
Affiliation:
Departmento de Química, Universidad Autónoma Metropolitana-Iztapalapa Apdo. Postal 55–534, México, D.F. 09340
R. Montiel-Campos
Affiliation:
Departmento de Física, Universidad Autónoma Metropolitana-Iztapalapa Apdo. Postal 55–534, México, D.F. 09340
E. Haro-Poniatowski
Affiliation:
Departmento de Física, Universidad Autónoma Metropolitana-Iztapalapa Apdo. Postal 55–534, México, D.F. 09340
*
a)Author to whom correspondence should be addressed.
Get access

Abstract

Titania matrices prepared by a sol-gel technique were doped with several cations (La, Zn, Al, K, Na, Ca, Ba, and Co). The effect of the dopants on the thermal and structural properties of the materials is analyzed. The dopant concentration was 2% mol with respect to titanium, and in all cases the same anion (nitrate) was used. The transition temperatures from amorphous to anatase and from anatase to rutile were measured using x-ray diffraction. The amorphous-anatase transition is independent, for almost all samples, of the type of dopant used; however, the anatase-to-rutile phase transition depends strongly on the kind of cation. This means that the temperature range where the anatase phase exists can be controlled by choosing the appropriate dopant. We have found a correlation between the anatase-rutile phase transition temperature and the radius of the cations and their electric charge.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Popescu, C., Jianu, V., Alexandrescu, R., Morjan, I., and Pascu, L. M., Thermochim. Acta 129, 269 (1988).CrossRefGoogle Scholar
2.Popescu, C., Ursu, I., Alexandrescu, R., Popescu, M., Mihailescu, I. N., and Jianu, V., Thermochim. Acta 164, 79 (1990).CrossRefGoogle Scholar
3.Kofstad, P., Nonstoichiometry, Diffusion and Electrical Conductivity in Binary Metal Oxides (John Wiley Interscience, New York, 1972), Chap. 8.Google Scholar
4.Solomon, D. H. and Hawthorne, D. G., Chemistry of Paints and Fillers (John Wiley and Sons, New York, 1983), Chap. 2.Google Scholar
5.Chen, C. J. and Wu, J. M., Mater. Sci. Eng. B5, 377383 (1990).CrossRefGoogle Scholar
6.Mezey, E. J., Vapor Deposition, edited by Powell, C. F., Oxley, J. H., and Blocher, J. M. (John Wiley and Sons, New York, 1966).Google Scholar
7.MacKenzie, K. J. D., Trans. J. Brit. Ceram. Soc. 74, 2934 (1975) and 77–84 (1975).Google Scholar
8.Haro-Poniatowski, E., Rodríguez-Talavera, R., de la Cruz Heredia, M., and Cano-Corona, O., J. Mater. Res. 9, 2102 (1994).CrossRefGoogle Scholar
9.Kumar, K-N. P., Keizer, K., Burggraaf, A. J., Okubo, T., and Nagamoto, H., J. Mater. Chem. 3 (9), 923929 (1993).CrossRefGoogle Scholar
10.Kumar, K-N. P., Keizer, K., and Burggraaf, A. J., J. Mater. Chem. 3 (11), 11411149 (1993).CrossRefGoogle Scholar
11.Congshen, Z., Lisong, H., Fuxi, G., and Zhonghong, J., J. Non-Cryst. Solids 63, 105 (1984).CrossRefGoogle Scholar
12.Tohge, N., Moore, G. S., and Mackenzie, J. D., J. Non-Cryst. Solids 63, 95 (1984).CrossRefGoogle Scholar
13.Doeuff, S., Henry, M., and Sanchez, C., in Better Ceramics Through Chemistry II, edited by Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Soc. Symp. Proc. 73, Pittsburgh, PA, 1986), p. 653.Google Scholar
14.Li, P., Ohtsuki, C., Kokubo, T., Nakanishi, K., Soga, N., Nakamura, T., and Yamamuro, T., J. Mater. Sci. Med. 4, 127 (1993).Google Scholar
15.Akhtar, M. K., Pratsinis, S. E., and Mastrangelo, S. V. R., J. Mater. Res. 9, 12411249 (1994).CrossRefGoogle Scholar
16.Reyes, I., M.S. Thesis, Universidad Autónoma Metropolitana-Iztapalapa (1993). The presence of Ti31 was determined by magnetic susceptibility.Google Scholar