Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T00:57:44.810Z Has data issue: false hasContentIssue false

Nanostructural characterizations of hydrogen-permselective Si–Co–O membranes by transmission electron microscopy

Published online by Cambridge University Press:  31 January 2011

Shinji Fujisaki*
Affiliation:
Japan Fine Ceramics Center, Atsuta-ku, Nagoya 456-8587, Japan; and Department of Quantum Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
Koji Hataya
Affiliation:
Japan Fine Ceramics Center, Atsuta-ku, Nagoya 456-8587, Japan; and Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
Tomohiro Saito
Affiliation:
Japan Fine Ceramics Center, Atsuta-ku, Nagoya 456-8587, Japan
Shigeo Arai
Affiliation:
1M Electron Microscopy Laboratory, Eco Topia Science Institute, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
Yuji Iwamoto
Affiliation:
Japan Fine Ceramics Center, Atsuta-ku, Nagoya 456-8587, Japan; and Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
Kotaro Kuroda
Affiliation:
Department of Quantum Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
*
a) Address all correspondence to this author. e-mail: fujisaki@ngk.co.jp Present address: NGK Insulators, Ltd., 2-56 Suda-cho, Mizuho-ku, Nagoya 467-8530, Japan.
Get access

Abstract

Nanostructural characterizations of liquid metal–organic precursors-derived cobalt-doped amorphous silica (Si–Co–O) membranes supported on a mesoporous anodic alumina capillary (MAAC) tube were performed to study their unique high-temperature hydrogen gas permeation properties. Cross-sectional scanning transmission electron microscopy images and selected-area electron diffraction patterns indicated that the metal cobalt and the different oxidation states of cobalt oxides (CoO and Co3O4) nanocrystallites having a size range of 5–20 nm were in situ formed in the mesopore channels of the MAAC tube. In addition, high-resolution transmission electron microscopy micrographs and electron energy loss spectroscopy elemental mapping images indicated that the highly dense Co-doped amorphous Si–O formed within the mesopore channels of the MAAC tube. These nanostructural features could contribute to the hydrogen-selective permeation properties observed for the membranes.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.de Vos, R.M., Verweij, H.: High-selectivity, high-flux silica membranes for gas separation. Science 279, 1710 (1998)CrossRefGoogle Scholar
2.Kikuchi, E.: Palladium/ceramic membranes for selective hydrogen permeation and their application to membrane reactor. Catal. Today 25, 333 (1995)CrossRefGoogle Scholar
3.Kikuchi, E.: Membrane reactor application to hydrogen production. Catal. Today 56, 97 (2000)CrossRefGoogle Scholar
4.Kurungot, S., Yamaguchi, T., Nakao, S-I.: Rh/γ-Al2O3 catalytic layer integrated with sol-gel synthesized microporous silica membrane for compact membrane reactor applications. Catal. Lett. 86, 273 (2003)CrossRefGoogle Scholar
5.Uhlhorn, R.J.R., Keizer, K., Burggraaf, A.J.: Gas transport and separation with ceramic membranes, Part II: Synthesis and separation properties of microporous membranes. J. Membr. Sci. 66, 271 (1992)CrossRefGoogle Scholar
6.Nair, B.N., Yamaguchi, T., Okubo, T., Suematsu, H., Keizer, K., Nakao, S-I.: Sol-gel synthesis of molecular sieving silica membranes. J. Membr. Sci. 135, 237 (1997)CrossRefGoogle Scholar
7.Nair, B.N., Okubo, T., Nakao, S-I.: Structure and separation properties of silica membranes. Membrane 25, 73 (2000)CrossRefGoogle Scholar
8.Kusakabe, K., Shibao, F., Zhao, G., Sotowa, K-I., Watanabe, K., Saito, T.: Surface modification of silica membranes in a tubular-type module. J. Membr. Sci. 215, 321 (2003)CrossRefGoogle Scholar
9.Nomura, M., Ono, K., Gopalakrishnan, S., Sugawara, T., Nakao, S-I.: Preparation of a stable silica membrane by a counter diffusion chemical-vapor-deposition method. J. Membr. Sci. 251, 151 (2005)CrossRefGoogle Scholar
10.Nagano, T., Fujisaki, S., Sato, K., Hataya, K., Iwamoto, Y.: Relationship between the mesoporous intermediate layer structure and the gas permeation property of an amorphous ailica membrane synthesized by counter diffusion chemical vapor deposition. J. Am. Ceram. Soc. 91, 71 (2008)CrossRefGoogle Scholar
11.Yan, S., Maeda, H., Kusakabe, K., Morooka, S., Akiyama, Y.: Hydrogen-permselective SiO2 membrane formed in pores of alumina support tube by chemical vapor deposition with tetraethyl orthosilicate. Ind. Eng. Chem. Res. 33, 2096 (1994)CrossRefGoogle Scholar
12.Iwamoto, Y., Sato, K., Kato, T., Inada, T., Kubo, Y.: A hydrogen-permselective amorphous silica membrane derived from polysilazane. J. Eur. Ceram. Soc. 25, 257 (2005)CrossRefGoogle Scholar
13.Iwamoto, Y.: Microporous ceramic membranes for high-temperature separation of hydrogen. Membrane 29, 258 (2004)CrossRefGoogle Scholar
14.Yamazaki, S., Uno, N., Mori, H., Ikuhara, Y.H., Iwamoto, Y., Kato, T., Hirayama, T.: TEM observation of hydrogen permeable Si–M–O (M = Ni or Sc) membranes synthesized on mesoporous anodic alumina capillary tubes. J. Mater. Sci. 41, 2679 (2006)CrossRefGoogle Scholar
15.Ikuhara, Y.H., Mori, H., Saito, T., Iwamoto, Y.: High-temperature hydrogen adsorption properties of precursor-derived nickel nanoparticle-dispersed amorphous silica. J. Am. Ceram. Soc. 90, 546 (2007)CrossRefGoogle Scholar
16.Iwamoto, Y., Fujisaki, S., Uno, N., Sato, M., Hataya, K.: Adv. Mater. (submitted)Google Scholar
17.Mori, H., Fujisaki, S., Saito, T., Sumino, T., Iwamoto, Y.: Characterization and hydrogen interaction studies on cobalt-doped amorphous silica composite materials for high-temperature hydrogen separation membranes, in Proceedings of the 9th International Conference on Inorganic Membranes (ICIM9)June 25–29Lillehammer, Norway 2006)382385Google Scholar
18.Inada, T., Uno, N., Kato, T., Iwamoto, Y.: Meso-porous alumina capillary tube as a support for high-temperature gas separation membranes by novel pulse sequential anodic oxidation technique. J. Mater. Res. 20, 114 (2005)CrossRefGoogle Scholar
19.Ishitani, T., Tsuboi, H., Yaguchi, T., Koike, H.: Transmission electron microscope sample preparation using a focused ion beam. J. Electron Microsc. (Tokyo) 43, 322 (1994)Google Scholar
20.Kato, T., Sasaki, Y., Osada, K., Hirayama, T., Saka, H.: Transmission electron microscopy studies of microstructures of silica-zirconia membranes for gas separation. Surf. Interface Anal. 31, 409 (2001)CrossRefGoogle Scholar
21.Sasaki, H., Matsuda, T., Kato, T., Muroga, T., Iijima, Y., Saitoh, T., Iwase, F., Yamada, Y., Izumi, T., Shiohara, Y., Hirayama, T.: Specimen preparation for high-resolution transmission electron microscopy using focused ion beam and Ar ion milling. J. Electron Microsc. (Tokyo) 53, 497 (2004)CrossRefGoogle ScholarPubMed
22.Pennycook, P.J.: Z-contrast STEM for materials science. Ultramicroscopy 30, 58 (1989)CrossRefGoogle Scholar
23.Nakamura, K., Kakibayashi, H., Kanehori, K., Tanaka, N.: Position dependence of the visibility of a single gold atom in silicon crystals in HAADF-STEM image simulation. J. Electron Microsc. (Tokyo) 46, 33 (1997)CrossRefGoogle Scholar