Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-28T20:57:23.307Z Has data issue: false hasContentIssue false

Nitrogen and vacancy clusters in ZnO

Published online by Cambridge University Press:  23 July 2013

Filip Tuomisto*
Affiliation:
Department of Applied Physics, Aalto University, FI-00076 Aalto, Finland
Christian Rauch
Affiliation:
Department of Applied Physics, Aalto University, FI-00076 Aalto, Finland
Markus R. Wagner
Affiliation:
ICN2 - Institut Catala de Nanociencia i Nanotecnologia, Campus UAB, 08193 Bellaterra (Barcelona), Spain; andInstitute of Solid State Physics, Technical University Berlin, 10623 Berlin, Germany
Axel Hoffmann
Affiliation:
Institute of Solid State Physics, Technical University Berlin, 10623 Berlin, Germany
Sebastian Eisermann
Affiliation:
I. Physics Institute, Justus-Liebig-University Giessen, 35392 Giessen, Germany
Bruno K. Meyer
Affiliation:
I. Physics Institute, Justus-Liebig-University Giessen, 35392 Giessen, Germany
Lukasz Kilanski
Affiliation:
Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw, Poland
Marianne C. Tarun
Affiliation:
Department of Physics and Astronomy, Washington State University, Pullman, Washington, 99164-2814
Matthew D. McCluskey
Affiliation:
Department of Physics and Astronomy, Washington State University, Pullman, Washington, 99164-2814
*
a)Address all correspondence to this author. e-mail: filip.tuomisto@aalto.fi
Get access

Abstract

Understanding the interaction of group V impurities with intrinsic defects in ZnO is important for developing p-type material. We have studied N-doped ZnO thin films and N-doped bulk ZnO crystals, with positron annihilation spectroscopy, in contrast to earlier studies that have concentrated on N-implanted ZnO crystals. We show that the introduction of N impurities into ZnO, irrespective of whether it is done during the growth of thin films or bulk crystals or through implantation and subsequent thermal treatments, leads to the formation of stable vacancy clusters and negative ion-type defects. Interestingly, the stability of these vacancy clusters is found almost exclusively for N introduction, whereas single Zn vacancy defects or easily removable vacancy clusters are more typically found for ZnO doped with other impurities.

Type
Invited Feature Paper
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Meyer, B.K., Alves, H., Hofmann, D.M., Kriegseis, W., Forster, D., Bertram, F., Christen, J., Hoffmann, A., Straßburg, M., Dworzak, M., Haboeck, U., and Rodina, A.V.: Bound exciton and donor–acceptor pair recombinations in ZnO. Phys. Status Solidi B 241, 231 (2004).CrossRefGoogle Scholar
Ozgur, U., Alivov, Y.I., Liu, C., Teke, A., Reshchikov, M.A., Dogan, S., Avrutin, V., Cho, S.J., and Morkoc, H.: A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005).CrossRefGoogle Scholar
Klingshirn, C.F., Meyer, B.K., Waag, A., Hoffmann, A., and Geurts, J.: Zinc Oxide. Springer Ser. Mater. Sci. 120, (2010).CrossRefGoogle Scholar
Børseth, T.M., Tuomisto, F., Christensen, J.S., Monakhov, E.V., Svensson, B.G., and Kuznetsov, A.Y.: Vacancy clustering and acceptor activation in nitrogen-implanted ZnO. Phys. Rev. B. 77, 045204 (2008).CrossRefGoogle Scholar
Perillat-Merceroz, G., Donatini, F., Thierry, R., Jouneau, P-H., Ferret, P., and Feuillet, G.: Structural recovery of ion implanted ZnO nanowires. J. Appl. Phys. 111, 083524 (2012).CrossRefGoogle Scholar
Myers, M.A., Myers, M.T., General, M.J., Lee, J.H., Shao, L., and Wang, H.: P-type ZnO thin films achieved by N+ ion implantation through dynamic annealing process. Appl. Phys. Lett. 101, 112101 (2012).CrossRefGoogle Scholar
Lautenschlaeger, S., Eisermann, S., Meyer, B.K., Callison, G., Wagner, M.R., and Hoffmann, A.: Nitrogen incorporation in homoepitaxial ZnO CVD epilayers. Phys. Status Solidi RRL 3, 16 (2009).CrossRefGoogle Scholar
Lautenschlaeger, S., Eisermann, S., Haas, G., Zolnowski, E.A., Hofmann, M.N., Laufer, A., Pinnisch, M., Meyer, B.K., Wagner, M.R., Reparaz, J.S., Callsen, G., Hoffmann, A., Chernikov, A., Chatterjee, S., Bornwasser, V., and Koch, M.: Optical signatures of nitrogen acceptors in ZnO. Phys. Rev. B 85, 235204 (2012).CrossRefGoogle Scholar
Tarun, M.C., Zafar Iqbal, M., and McCluskey, M.D.: Nitrogen is a deep acceptor in ZnO. AIP Adv. 1, 022105 (2011).CrossRefGoogle Scholar
Puff, W., Brunner, S., Mascher, P., and Balogh, A.G.: Studies of defects in electron and proton irradiated ZnO by positron annihilation. Mater. Sci. Forum 196201, 333 (1995).CrossRefGoogle Scholar
Tuomisto, F., Ranki, V., Saarinen, K., and Look, D.C.: Evidence of the Zn vacancy acting as the dominant acceptor in n-type ZnO. Phys. Rev. Lett. 91, 205502 (2003).CrossRefGoogle ScholarPubMed
Chen, Z.Q., Wang, S.J., Maekawa, M., Kawasuso, A., Naramoto, H., Yuan, X.L., and Sekiguchi, T.: Thermal evolution of defects in as-grown and electron-irradiated ZnO studied by positron annihilation. Phys. Rev. B 75, 245206 (2007).CrossRefGoogle Scholar
Lautenschlaeger, S., Sann, J., Volbers, N., Meyer, B.K., Hoffmann, A., Haboeck, U., and Wagner, M.R.: Asymmetry in the excitonic recombinations and impurity incorporation of the two polar faces of homoepitaxially grown ZnO films. Phys. Rev. B 77, 144108 (2008).CrossRefGoogle Scholar
Wagner, M.R., Bartel, T.P., Kirste, R., Hoffmann, A., Sann, J., Lautenschläger, S., Meyer, B.K., and Kisielowski, C.: Influence of substrate surface polarity on homoepitaxial growth of ZnO layers by chemical vapor deposition. Phys. Rev. B 79, 035307 (2009).CrossRefGoogle Scholar
Jokela, S.J. and McCluskey, M.D.: Hydrogen complexes in ZnO grown by chemical vapor transport. Physica B 401402, 395 (2007).CrossRefGoogle Scholar
Saarinen, K., Hautojärvi, P., and Corbel, C.: Positron annihilation spectroscopy of defects in semiconductors, in Identification of Defects in Semiconductors (Semiconductors and Semimetals), Vol. 51A, edited by Stavola, M. (Academic Press, New York, 1998), p. 209.CrossRefGoogle Scholar
Tuomisto, F. and Makkonen, I.: Defect identification in semiconductors: Experiment and theory of positron annihilation. Rev. Mod. Phys, to be published.Google Scholar
Puska, M.J. and Nieminen, R.M.: Theory of positrons in solids and on solid surfaces. Rev. Mod. Phys. 66, 841 (1994).CrossRefGoogle Scholar
Tuomisto, F., Saarinen, K., Look, D.C., and Farlow, G.C.: Introduction and recovery of point defects in electron-irradiated ZnO. Phys. Rev. B 72, 085206 (2005).CrossRefGoogle Scholar
Zubiaga, A., Tuomisto, F., Coleman, V.A., Tan, H.H., Jagadish, C., Koike, K., Sasa, S., Inoue, M., and Yano, M.: Mechanisms of electrical isolation in O+-irradiated ZnO. Phys. Rev. B 78, 035125 (2008).CrossRefGoogle Scholar
Johansen, K.M., Zubiaga, A., Makkonen, I., Tuomisto, F., Neuvonen, P.T., Knutsen, K.E., Monakhov, E.V., Kuznetsov, A.Y., and Svensson, B.G.: Identification of substitutional Li in n-type ZnO and its role as an acceptor. Phys. Rev. B 83, 245208 (2011).CrossRefGoogle Scholar
Johansen, K.M., Zubiaga, A., Tuomisto, F., Monakhov, E.V., Kuznetsov, A.Y., and Svensson, B.G.: H passivation of Li on Zn-site in ZnO: Positron annihilation spectroscopy and secondary ion mass spectrometry. Phys. Rev. B 84, 115203 (2011).CrossRefGoogle Scholar
Rauch, C., Makkonen, I., and Tuomisto, F.: Identifying vacancy complexes in compound semiconductors with positron annihilation spectroscopy: A case study of InN. Phys. Rev. B 84, 125201 (2011).CrossRefGoogle Scholar
Tuomisto, F., Mycielski, A., and Grasza, K.: Vacancy defects in (Zn, Mn)O. Superlattices Microstruct. 42, 218 (2007).CrossRefGoogle Scholar
Zubiaga, A., Tuomisto, F., Plazaola, F., Saarinen, K., Garcia, J.A., Rommeluere, J.F., Zuñiga-Pérez, J., and Muñoz-San José, V.: Zinc vacancies in the heteroepitaxy of ZnO on sapphire: Influence of the substrate orientation and layer thickness. Appl. Phys. Lett. 86, 042103 (2005).CrossRefGoogle Scholar
Zubiaga, A., Tuomisto, F., Zuñiga-Pérez, J., and Muñoz-San José, V.: Characterization of non-polar ZnO layers with positron annihilation spectroscopy. Acta Phys. Pol. A 114, 1457 (2008).CrossRefGoogle Scholar
Look, D.C., Leedy, K.D., Vines, L., Svensson, B.G., Zubiaga, A., Tuomisto, F., Doutt, D., and Brillson, L.J.: Self-compensation in semiconductors: The Zn-vacancy in Ga-doped ZnO. Phys. Rev. B 84, 115202 (2011).CrossRefGoogle Scholar
Chen, Z.Q., Maekawa, M., Yamamoto, S., Kawasuso, A., Yuan, X.L., Sekiguchi, T., Suzuki, R., and Ohdaira, T.: Evolution of voids in Al+-implanted ZnO probed by a slow positron beam. Phys. Rev. B 69, 035210 (2004).CrossRefGoogle Scholar
Chen, Z.Q., Sekiguchi, T., Yuan, X.L., Maekawa, M., and Kawasuso, A.: N+ ion-implantation-induced defects in ZnO studied with a slow positron beam. J. Phys. Condens. Matter 16, S293 (2004).CrossRefGoogle Scholar
Chen, Z.Q., Kawasuso, A., Xu, Y., Naramoto, H., Yuan, X.L., Sekiguchi, T., Suzuki, R., and Ohdaira, T.: Production and recovery of defects in phosphorus-implanted ZnO. J. Appl. Phys. 97, 013528 (2005).CrossRefGoogle Scholar
Chen, Z.Q., Kawasuso, A., Xu, Y., Naramoto, H., Yuan, X.L., Sekiguchi, T., Suzuki, R., and Ohdaira, T.: Microvoid formation in hydrogen-implanted ZnO probed by a slow positron beam. Phys. Rev. B 71, 115213 (2005).CrossRefGoogle Scholar
Chen, Z.Q., Maekawa, M., Kawasuso, A., Suzuki, R., and Ohdaira, T.: Interaction of nitrogen with vacancy defects in N+-implanted ZnO studied using a slow positron beam. Appl. Phys. Lett. 87, 091910 (2005).CrossRefGoogle Scholar
Brauer, G., Anwand, W., Skorupa, W., Kuriplach, J., Melikhova, O., and Moisson, C.: Defects in virgin and N+-implanted ZnO single crystals studied by positron annihilation, Hall effect, and deep-level transient spectroscopy. Phys. Rev. B 74, 045208 (2006).CrossRefGoogle Scholar
Chen, Z.Q., Maekawa, M., and Kawasuso, A.: Energy variable slow positron beam study of Li+-implantation-induced defects in ZnO. Chin. Phys. Lett. 23, 675 (2006).Google Scholar
Chen, Z.Q., Maekawa, M., Kawasuso, A., Sakai, S., and Naramoto, H.: Annealing process of ion-implantation-induced defects in ZnO: Chemical effect of the ion species. J. Appl. Phys. 99, 093507 (2006).CrossRefGoogle Scholar
Børseth, T.M., Tuomisto, F., Christensen, J.S., Skorupa, W., Monakhov, E.V., Svensson, B.G., and Kuznetsov, A.Y.: Deactivation of Li by vacancy clusters in ion-implanted and flash-annealed ZnO. Phys. Rev. B 74, 161202R (2006).CrossRefGoogle Scholar
Neuvonen, P.T., Vines, L., Venkatachalapathy, V., Zubiaga, A., Tuomisto, F., Hallén, A., Svensson, B.G., and Kuznetsov, A.Y.: Defect evolution and impurity migration in Na implanted ZnO. Phys. Rev. B 84, 205202 (2011).CrossRefGoogle Scholar
Zubiaga, A., Plazaola, F., García, J.A., Reurings, F., Tuomisto, F., Kuznetsov, A.Y., Egger, W., Zuñiga-Pérez, J., and Muñoz-Sanjosé, V.: Role of vacancy clusters in Zn1−xCdxO alloys. J. Appl. Phys. 113, 032512 (2013).Google Scholar
Nickel, N.H.: Unpublished.Google Scholar