Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-02T18:03:57.110Z Has data issue: false hasContentIssue false

A note on the elastic contact stiffness of a layered medium

Published online by Cambridge University Press:  03 March 2011

Huajian Gao
Affiliation:
Division of Applied Mechanics, Stanford University, Stanford, California 94305-4040
Tsai-Wei Wu
Affiliation:
IBM Research Division, Almaden Research Center, San Jose, California 95120-6099
Get access

Abstract

A perturbation method is used to confirm that the elastic contact stiffness associated with a flat-ended punch indenting a layered medium is insensitive to the cross-section shape of the punch as long as the shape does not differ too much from a circle. This result supports the practice of modeling nonaxisymmetric indenters such as Vickers or Berkovich indenters as an axisymmetric flat-ended cylindrical punch.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Newey, D., Wilkins, M. A., and Pollock, H. M., J. Phys. E: Sci. Instrum. 15, 119 (1982).CrossRefGoogle Scholar
2Pethica, J., Hutchings, R., and Oliver, W. C., Philos. Mag. A 48, 593 (1983).CrossRefGoogle Scholar
3Loubet, J. L., Georges, J. M., Marchesini, O., and Meille, G., J. Tribology 106, 43 (1984).CrossRefGoogle Scholar
4Hannula, S-P., Stone, D., and Li, C-Y., in Electronic Packaging Materials Science, edited by Giess, E.A., Tu, K. N., and Uhlmann, D. R. (Mater. Res. Soc. Symp. Proc. 40, Pittsburgh, PA, 1985), p. 217.Google Scholar
5Doerner, M. F. and Nix, W. D., J. Mater. Res. 1, 601 (1986).CrossRefGoogle Scholar
6Wu, T. W., Huang, C., Lo, J., and Alexopoulos, P. S., Thin Solid Films 166, 299 (1988).CrossRefGoogle Scholar
7Wu, T. W., J. Mater. Res. 6, 407 (1991).Google Scholar
8King, R. B., Int. J. Solids Structures 23, 1657 (1987).CrossRefGoogle Scholar
9Phan, G. M., Oliver, W. C., and Brotzen, F. R., J. Mater. Res. 7, 613 (1992).Google Scholar
10Sneddon, I. N., Int. J. Eng. Sci. 3, 47 (1965).CrossRefGoogle Scholar
11Tada, H., Paris, P. C., and Irwin, G. R., The Stress Analysis of Cracks Handbook (Del Research Corporation, Hellertown, PA, 1973).Google Scholar
12Gao, H., Chiu, C., and Lee, J., Int. J. Solids Structures 29, 2471 (1992).Google Scholar
13Elliot, H. A., Proc. Cambridge Philos. Soc. 45, 227, 253, 343 (1949).Google Scholar
14Rice, J. R., J. Appl. Mech. 52, 571 (1985).CrossRefGoogle Scholar
15Gao, H. and Rice, J. R., Int. J. Fract. 52, 155 (1987).CrossRefGoogle Scholar
16Gao, H. and Rice, J. R., J. Appl. Mech. 54, 627 (1987).CrossRefGoogle Scholar