Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-14T19:31:10.466Z Has data issue: false hasContentIssue false

Optical emission spectroscopic studies on the growth of YBCO thin films by dc-94.92 MHz hybrid plasma sputtering

Published online by Cambridge University Press:  03 March 2011

W. Ito
Affiliation:
Superconductivity Research Laboratory, ISTEC, 10-13 Shinonome 1 chome, Koto-ku, Tokyo 135, Japan
S. Mahajan
Affiliation:
Superconductivity Research Laboratory, ISTEC, 10-13 Shinonome 1 chome, Koto-ku, Tokyo 135, Japan
S. Okayama
Affiliation:
Superconductivity Research Laboratory, ISTEC, 10-13 Shinonome 1 chome, Koto-ku, Tokyo 135, Japan
Y. Yoshida
Affiliation:
Superconductivity Research Laboratory, ISTEC, 10-13 Shinonome 1 chome, Koto-ku, Tokyo 135, Japan
T. Morishita
Affiliation:
Superconductivity Research Laboratory, ISTEC, 10-13 Shinonome 1 chome, Koto-ku, Tokyo 135, Japan
Get access

Abstract

Optical emission spectroscopic studies of dc-94.92 MHz hybrid plasma generated in the newly developed magnetron sputtering system were performed during the growth of YBa2Cu3O7−δ (YBCO) thin films. All the detectable species showed uniform spatial distribution along the radial direction of the target more than 8 mm above the target surface. High cathode current conditions in the hybrid plasma were found to make the plasma with high ion density. The high ionizing efficiency was concluded to be essential in obtaining an excellent crystalline film. This result is explained by the ion acceleration mechanism through the ion sheath formed near the substrate surface. Oxygen gas introduced into the growing chamber during deposition was found to be responsible for the oxidation of the target surface.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Homma, N., Okayama, S., Takahashi, H., Yoshida, I., Morishita, T., Tanaka, S., Haga, T., and Yamaya, K., Appl. Phys. Lett. 59, 1383 (1991).CrossRefGoogle Scholar
2Homma, N., Takahashi, H., Okayama, S., Morishita, T., and Tanaka, S., J. Mater. Res. 7, 813 (1992).CrossRefGoogle Scholar
3Homma, N., Okayama, S., Takahashi, H., Kawamoto, S., Yoshida, I., Kamei, M., Morishita, T., Haga, T., and Yamaya, K., Physica C 194, 430 (1992).CrossRefGoogle Scholar
4Homma, N., Ito, W., Okayama, S., Morishita, T., Haga, T., and Yamaya, K., J. Mater. Res. 7, 2916 (1992).CrossRefGoogle Scholar
5Ito, W., Oishi, A., Okayama, S., Yoshida, Y., Homma, N., Morishita, T., Haga, T., and Yamaya, K., Physica C 204, 295 (1993).CrossRefGoogle Scholar
6Ito, W., Okayama, S., Homma, N., Oishi, A., and Morishita, T., Appl. Phys. Lett. 62, 1312 (1993).Google Scholar
7Rrumme, J. P., Hack, R. A. A., and Raaijmakers, I. J. M. M., J. Appl. Phys. 70, 6743 (1991).Google Scholar
8Xi, X. X., Wu, X. D., Inam, A., Li, Q., Hemmick, D., Findikoglu, A., Venkatesan, T., Chang, C. C., and Howard, R., Appl. Phys. Lett. 57, 96 (1990).CrossRefGoogle Scholar
9Klein, J. D. and Yen, A., Appl. Phys. Lett. 55, 2670 (1989).CrossRefGoogle Scholar
10Ying, Q. Y., Shaw, D. T., and Kwok, H. S., Appl. Phys. Lett. 53, 1762 (1988).CrossRefGoogle Scholar
11Lucia, M. L., Hernandez-Rojas, J. L., Santamaria, J., Martil, I., González-Diaz, G., and Sanchez-Quesada, F., Appl. Phys. Lett. 61, 231 (1992).CrossRefGoogle Scholar
12Handbook of Chemistry and Physics, 68th ed. (Chemical Rubber, New York, 1988).Google Scholar
13Atomic Transition Probabilities (National Standard Reference Data Series, NBS 4&22, Washington, DC, 1966, 1969), Vols. I&II.Google Scholar
14Ito, W., Yoshida, Y., Mahajan, S., and Morishita, T. (unpublished).Google Scholar
15Gavaler, J. R., Talvacchio, J., Braggins, T. T., Forrester, M. G., and Greggi, J., J. Appl. Phys. 70, 4383 (1991).CrossRefGoogle Scholar