Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-01T06:37:52.188Z Has data issue: false hasContentIssue false

Oxidation of Zr2[Al(Si)]4C5 and Zr3[Al(Si)]4C6 in air

Published online by Cambridge University Press:  31 January 2011

L.F. He
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; and Graduate School of Chinese Academy of Sciences, Beijing 100039, China
Y.W. Bao
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
M.S. Li
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
J.Y. Wang
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Y.C. Zhou*
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
*
a)Address all correspondence to this author. e-mail: yczhou@imr.ac.cn
Get access

Abstract

The oxidation behavior of Zr2[Al(Si)]4C5 and Zr3[Al(Si)]4C6 in air has been investigated. The oxidation kinetics of bulk Zr2[Al(Si)]4C5 and Zr3[Al(Si)]4C6 at 900–1300 °C generally follow a parabolic law at a very short initial stage and then a linear law for a long period with the activation energy of 237.9 and 226.8 kJ/mol, respectively. The oxide scales have a duplex structure, consisting of mainly an outer porous layer of ZrO2, Al2O3, and aluminosilicate/mullite, and a thin inner compact layer of these oxides plus remaining carbon. The oxidation resistance of Zr2[Al(Si)]4C5 and Zr3[Al(Si)]4C6 has been improved compared with Zr2Al3C4, and is much better than ZrC due to larger fraction of protective oxidation products, Al2O3 and aluminosilicate/mullite.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Storms, E.K.: The Refractory Carbides Academic Press New York 1967 18–34Google Scholar
2Upadhya, K., Yang, J.M., Hoffman, W.P.: Materials for ultrahigh temperature structural applications. Am. Ceram. Soc. Bull. 58, 51 1997Google Scholar
3Opeka, M.M., Talmy, I.G., Wuchina, E.J., Zaykoski, J.A., Causey, S.J.: Mechanical, thermal, and oxidation properties of refractory hafnium and zirconium compounds. J. Eur. Ceram. Soc. 19, 2405 1999CrossRefGoogle Scholar
4Opeka, M.M., Talmy, I.G., Zaykoski, J.A.: Oxidation-based materials selection for 2000 °C + hypersonic aerosurfaces: Theoretical considerations and historical experience. J. Mater. Sci. 39, 5887 2004CrossRefGoogle Scholar
5Kuriakose, A.K., Margrave, J.L.: The oxidation kinetics of zirconium diboride and zirconium carbide at high temperatures. J. Electrochem. Soc. 111, 827 1964CrossRefGoogle Scholar
6Leela-adisorn, U., Choi, S.M., Hashimoto, S., Honda, S., Awaji, H., Hayakawa, K., Yamaguchi, A.: Sintering and characterization of Zr2Al3C5 monolith. Key Eng. Mater. 317–318, 27 2006CrossRefGoogle Scholar
7He, L.F., Lin, Z.J., Wang, J.Y., Bao, Y.W., Li, M.S., Zhou, Y.C.: Synthesis and characterization of bulk Zr2Al3C4 ceramic. J. Am. Ceram. Soc. 90, 3687 2007CrossRefGoogle Scholar
8He, L.F., Wang, J.Y., Bao, Y.W., Zhou, Y.C.: Elastic and thermal properties of Zr2Al3C4: Experimental investigation and ab initio calculations. J. Appl. Phys. 102, 043531 2007CrossRefGoogle Scholar
9He, L.F., Lin, Z.J., Bao, Y.W., Li, M.S., Wang, J.Y., Zhou, Y.C.: Isothermal oxidation of bulk Zr2Al3C4 at 500 to 1000 °C in air. J. Mater. Res. 23, 359 2008CrossRefGoogle Scholar
10He, L.F., Bao, Y.W., Li, M.S., Wang, J.Y., Zhou, Y.C.: Improving the high-temperature oxidation resistance of Zr2Al3C4 by silicon pack cementation. J. Mater. Res. 23, 2275 2008CrossRefGoogle Scholar
11Huang, X.X., Wen, G.W., Cheng, X.M., Zhang, B.Y.: Oxidation behavior of Al4SiC4 ceramic up to 1700 °C. Corros. Sci. 49, 2059 2007CrossRefGoogle Scholar
12Yamamoto, O., Ohtani, M., Sasamoto, T.: Preparation and oxidation of Al4SiC4. J. Mater. Res. 17, 774 2002CrossRefGoogle Scholar
13Fukuda, K., Hisamura, M., Iwata, T., Tera, N., Sato, K.: Synthesis, crystal structure, and thermoelectric properties of a new carbide Zr2[Al3.56Si0.44]C5. J. Solid State Chem. 180, 1809 2007CrossRefGoogle Scholar
14Fukuda, K., Hisamura, M., Kawamoto, Y., Iwata, T.: Synthesis, crystal structure, and thermoelectric properties of a new layered carbide (ZrC)3[Al3.56Si0.44]C3. J. Mater. Res. 22, 2888 2007CrossRefGoogle Scholar
15Lin, Z.J., He, L.F., Wang, J.Y., Li, M.S., Bao, Y.W., Zhou, Y.C.: Atomic-scale microstructures and elastic properties of quaternary Zr-Al-Si-C ceramics. Acta Mater. 56, 2022 2008CrossRefGoogle Scholar
16Robertson, J.: Diamond-like amorphous carbon. Mater. Sci. Eng., R 37, 129 2002CrossRefGoogle Scholar
17Bartsch, M., Saruhan, B., Schmucker, M., Schneider, H.: Novel low-temperature processing of dense mullite ceramics by reaction sintering of amorphous SiO2-coated γ-Al2O3 particle nanocomposites. J. Am. Ceram. Soc. 82, 1388 1999CrossRefGoogle Scholar
18Takei, T., Kameshima, Y., Yasumori, A., Okada, K.: Crystallization kinetics of mullite from Al2O3-SiO2 glasses under non-isothermal conditions. J. Eur. Ceram. Soc. 21, 2487 2001CrossRefGoogle Scholar
19Schneider, H., Schreuer, J., Hildmann, B.: Structure and properties of mullite—A review. J. Eur. Ceram. Soc. 28, 329 2008CrossRefGoogle Scholar
20Chiang, Y.M., Birnie, D., Kingery, W.D.: Physical Ceramics: Principles for Ceramic Science and Engineering, (John Wiley & Sons, New York, 1997)Google Scholar
21Shimada, S., Nishisako, M., Inagaki, M., Yamamoto, K.: Formation and microstructure of carbon-containing oxide scales by oxidation of single crystals of zirconium carbide. J. Am. Ceram. Soc. 78, 41 1995CrossRefGoogle Scholar
22Wang, J.Y., Zhou, Y.C., Lin, Z.J., Liao, T., He, L.F.: First-principles prediction of the mechanical properties and electrical structure of ternary aluminum carbide Zr3Al3C5. Phys. Rev. B 73, 134107 2006CrossRefGoogle Scholar
23Rao, Y.K.: Stoichiometry and Thermodynamics of Metallurgical Processes Cambridge University Press Cambridge, UK 1985Google Scholar
24Shukla, S., Seal, S.: Mechanism of room temperature metastable tetragonal phase stabilization in zirconia. Int. Mater. Rev. 50, 45 2005CrossRefGoogle Scholar
25Shimada, S.: Interfacial reaction on oxidation of carbides with formation of carbon. Solid State Ionics 141–142, 99 2001CrossRefGoogle Scholar
26Shimada, S., Yunazar, F., Otani, S.: Oxidation of hafnium carbide and titanium carbide single crystals with the formation of carbon at high temperatures and low oxygen pressures. J. Am. Ceram. Soc. 83, 721 2000CrossRefGoogle Scholar
27Shimada, S., Yoshimatsu, M., Inagaki, M., Otani, S.: Formation and characterization of carbon at the ZrC/ZrO2 interface by oxidation of ZrC single crystals. Carbon 36, 1125 1998CrossRefGoogle Scholar
28Shimada, S., Inagaki, M., Suzuki, M.: Microstructural observation of the ZrC/ZrO2 interface formed by oxidation of ZrC. J. Mater. Res. 11, 2594 1996CrossRefGoogle Scholar
29Tuinstra, F., Koenig, J.L.: Raman spectrum of graphite. J. Chem. Phys. 53, 1126 1970CrossRefGoogle Scholar