Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-02T22:03:32.487Z Has data issue: false hasContentIssue false

Phase structure and thermal evolution in coatings and powders obtained by the sol-gel process: Part I. ZrO2−11.3 mol% Y2O3

Published online by Cambridge University Press:  31 January 2011

P. C. Rivas
Affiliation:
Programa TENAES, Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, c.c. 67, 1900 La Plata, Argentina
M. C. Caracoche
Affiliation:
Programa TENAES, Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, c.c. 67, 1900 La Plata, Argentina
J. A. Martínez
Affiliation:
Programa TENAES, Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, c.c. 67, 1900 La Plata, Argentina
A. M. Rodríguez
Affiliation:
Programa TENAES, Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, c.c. 67, 1900 La Plata, Argentina
R. Caruso
Affiliation:
Laboratorio de Materiales Ceráamicos, FCEIyA-UNR, IFIR, Av. Pellegrini 250, 2000 Rosario, Argentina
N. Pellegri
Affiliation:
Laboratorio de Materiales Ceráamicos, FCEIyA-UNR, IFIR, Av. Pellegrini 250, 2000 Rosario, Argentina
O. de Sanctis
Affiliation:
Laboratorio de Materiales Ceráamicos, FCEIyA-UNR, IFIR, Av. Pellegrini 250, 2000 Rosario, Argentina
Get access

Abstract

Yttria-stabilized cubic zirconia powders and coatings produced by the sol-gel method have been investigated by Perturbed Angular Correlation Spectroscopy (PAC). Results indicate that the metastable cubic phase is retained during heating and cooling cycles. The hyperfine interaction that describes this cubic phase, once crystallized, exhibits two components in a constant ratio of 4 : 1. The components represent different vacancy configurations. For the fast movement of oxygen vacancies starting at 750 °C, which is reflected by the damping of the hyperfine pattern, an activation energy of 0.96 eV was determined.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Rühle, M., Claussen, N., and Heuer, H., in Advances in Ceramics, Vol. 12, edited by Claussen, N., Rühl, M., and Heuer, H. (The American Ceramic Society, Westerville, OH, 1984), p. 352.Google Scholar
2.Tsukuma, K., Ueda, K., Matsushita, K., and Shimada, M., J. Am. Ceram. Soc. 68 (2), C-56 (1985).Google Scholar
3.Stecura, S., Am. Ceram. Soc. Bull. 56 (12), 1082 (1977).Google Scholar
4.Bratton, R. J. and Lau, S. K., in Advances in Ceramics, Vol. 3, edited by Heuer, H. and Hobbs, L. W. (The American Ceramic Society, Westerville, OH, 1981), p. 226.Google Scholar
5.Logothetis, E. M., in Advances in Ceramics, Vol. 3, edited by Heuer, H. and Hobbs, L. W. (The American Ceramic Society, Westerville, OH, 1981), p. 388.Google Scholar
6.Isaacs, H., in Advances in Ceramics, Vol. 3, edited by Heuer, H. and Hobbs, L. W. (The American Ceramic Society, Westerville, OH, 1981), p. 406.Google Scholar
7. Section V, in Advances in Ceramics, Vol. 12, edited by Claussen, N., Rühl, M., and Heuer, H. (The American Ceramic Society, Westerville, OH, 1984), pp. 555690.Google Scholar
8.Yoldas, B. E., J. Am. Ceram. Soc. 65 (8), 337 (1982).CrossRefGoogle Scholar
9.Rivas, P. C., Martinéz, J. A., Caracoche, M. C., García, A. R. López, Klein, L. C., and Pavlik, R. S., Jr., J. Am. Ceram. Soc. 78 (5), 1329 (1995).CrossRefGoogle Scholar
10.Caruso, R., Pellegri, N., de Sanctis, O., Caracoche, M. C., and Rivas, P. C., in Metal-Organic Chemical Vapor Deposition of Electronic Ceramics, edited by Desu, S. B., Beach, D. B., Wessels, B. W., and Gokoglu, S. (Mater. Res. Soc. Symp. Proc. 335, Pittsburgh, PA, 1994).Google Scholar
11.Forker, M., private communication.Google Scholar
12.Jaeger, H., Gardner, J. A., Haygarth, J. C., and Rasera, R. L., J. Am. Ceram. Soc. 69 (6), 458 (1986).CrossRefGoogle Scholar
13.Caracoche, M. C., Dova, M. T., García, A. R. López, Martínez, J. A., and Rivas, P. C., Hyp. Int. 39, 117 (1988).CrossRefGoogle Scholar
14.Rivas, P. C., Caracoche, M. C., Pasquevich, A. F., Martínez, J. A., Rodríguez, A. M., López-García, A. R., and Mintzer, S. R., J. Am. Ceram. Soc. 79 (4), 831 (1996).CrossRefGoogle Scholar
15.Baudry, A., Boyer, P., and de Oliveira, A. L., Hyp. Int. 10, 1003 (1981).CrossRefGoogle Scholar
16.Jaeger, H., Ph.D. Thesis, Oregon State University (1987).Google Scholar
17.Caruso, R., Pellegri, N., de Sanctis, O., Caracoche, M. C., and Rivas, P. C., J. Sol-Gel Sci. Technol. 3, 241 (1994).CrossRefGoogle Scholar
18.Marshall, A. J. and Mears, C. F., J. Chem. Phys. 56 (3), 1226 (1972).CrossRefGoogle Scholar
19.Gardner, J. A., Jaeger, H., Su, H. T., Warnes, W. H., and Haygarth, J. C., Physica B 150, 223 (1988).CrossRefGoogle Scholar
20.Joint Committee on Powder Diffraction Standards, Powder Diffraction File, Card No. 30–1468, edited by Jenkins, R., Anderson, R., and McCarthy, G. J. (International Center for Diffraction Data, Swarthmore, PA, 1992).Google Scholar
21.Colomban, Ph. and Bruneton, E., J. Non-Cryst. Solids 147&148, 201 (1992).CrossRefGoogle Scholar
22.Cattlow, C. R. A., Chadwick, A. V., Greaves, G. N., and Moroney, L. M., J. Am. Ceram. Soc. 69 (3), 272 (1986).CrossRefGoogle Scholar
23.Li, P., I-Wei, and Penner-Han, J. E., Phys. Rev. B 48, 10 063 (1993).Google Scholar
24.Howard, C. J., Hill, R. J., and Reichert, B. E., Acta Crystallogr. B44, 116 (1988).CrossRefGoogle Scholar