Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T15:47:13.908Z Has data issue: false hasContentIssue false

Phase transformations and microstructure evolution in sol-gel derived yttrium-aluminum garnet films

Published online by Cambridge University Press:  31 January 2011

R.S. Hay
Affiliation:
Wright Laboratory, Materials Directorate, Wright Patterson Air Force Base, Ohio 45433
Get access

Abstract

Diphasic yttrium-aluminum garnet (Y3Al5O12, YAG) sols were made by hydrolysis of aluminum and yttrium isopropoxides. The sols were gelled across TEM grids to make films. The films were heat-treated up to 1550 °C for as long as 300 h. Heat-treatments of bulk gel were also done. Microstructure and phase evolution were observed by TEM. Some observations were done in situ in a TEM hot-stage. YAG fraction and grain size, matrix grain size, nuclei/area, and film thickness were measured. Bulk samples were characterized by x-ray, DTA, and TGA. Yttrium-aluminum monoclinic (YAM) and transition alumina appeared at 800 °C. YAG nucleated between 800 °C and 950 °C. Nucleation was weakly correlated with the transient presence of YAlO3 garnet, and was eventually site-saturated at 0.3/μm3. The change in grain growth rate of the YAM and transition alumina matrix correlated with the change in the growth rate of YAG. Between 850 °C and 1000 °C YAG growth had t1/2 dependence and 280 kJ/mole activation energy. Below 850 °C nucleation was continuous, and growth had t0.85 dependence. Above 1000 °C YAG growth had t1/4 dependence, and the matrix grains coarsened with t1/4 dependence. Thicker films reacted faster because the nuclei/area and the growth rate after nucleation scaled with thickness. YAG growth was accompanied by formation of 20–100 nm subgrains. In the late stages of matrix grain coarsening there was also some reaction to YAG by a different process. Nucleation and growth kinetics are compared with other systems. Possible mechanisms are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Yoder, H.S. and Keith, ML., Am. Min. 7, 519 (1951).Google Scholar
2Warshaw, I. and Roy, R., J. Am. Ceram. Soc. 42, 434 (1959).CrossRefGoogle Scholar
3DeWith, G. and Djik, H.J.A. van, Mater. Res. Bull. XIX, 1669 (1984).Google Scholar
4Gowda, G., J. Mater. Sci. Lett. 5, 1029 (1986).CrossRefGoogle Scholar
5Haneda, H., Watanabe, A., Matsuda, S., Sakai, T., Shirasaki, S., and Yamamura, H., Sintering 87, edited by Somiya, S., Shimada, M., Yoshimura, M., and Watanabe, R. (>Elsevier Science Publishers Ltd., Essex, England, 1988), p. 381.Google Scholar
6Sekita, M., Haneda, H., Yanagitani, T., and Shirasaki, S., J. Appl. Phys. 67, 453 (1990).CrossRefGoogle Scholar
7Messier, D. R. and Gazza, G. E., Am. Ceram. Soc. Bull. 51, 692 (1972).Google Scholar
8Hay, R. S., Hermes, E. E., and Jepsen, K. A., Ceramic Transactions–Ceramic Thin and Thick Films, edited by Hiremath, B.V. (The American Ceramic Society, Westerville, OH, 1990), Vol. 11, p. 243.Google Scholar
9Inoue, M., Otsu, H., Kominami, H., and Inui, T., J. Am. Ceram. Soc. 74, 1452 (1991).CrossRefGoogle Scholar
10Takamori, T. and David, L. D., Bull. Am. Ceram. Soc. 65, 1282 (1986).Google Scholar
11Apte, P., Burke, H., and Pickup, H., J. Mater. Res. 7, 706 (1992).CrossRefGoogle Scholar
12Gazza, G.E. and Dutta, S.K., U.S. Patent 3767745 (1973).Google Scholar
13Gazza, G.E. and Dutta, S.K., U.S. Patent 4029 755 (1977).Google Scholar
14Noguchi, T. and Mizuno, M., Kogyo Kogaku Zasshi 70, 839 (1969).Google Scholar
15Petot-Ervas, G., Deweirder, D., Loudjani, M., Lesage, B., and Huntz, A. M., Adv. Ceram. 23, 125 (1987).Google Scholar
16Cawley, J. D. and Halloran, J. W., J. Am. Ceram. Soc. 69, C-195 (1986).CrossRefGoogle Scholar
17McCune, R. C., Donlon, W.T., and Ku, R.C., J. Am. Ceram. Soc. 69, C-196 (1986).CrossRefGoogle Scholar
18Geusic, J.E., Marcos, H.M., and Uitert, L. G. Van, Appl. Phys. Lett. 4, 182 (1964).Google Scholar
19Bates, J. L. and Gamier, J. E., J. Am. Ceram. Soc. 64, C-138 (1981).CrossRefGoogle Scholar
20Corman, G. S., USAF/WRDC/TR-90-4059 (1990).Google Scholar
21Matson, L.E., Hay, R.S., and Mah, T., Ceram. Eng. Sci. Proc. 11 (1990).Google Scholar
22Hay, R.S. and Hermes, E.E., Ceram. Eng. Sci. Proc. 11, 1526 (1990).Google Scholar
23Hay, R. S., Ceram. Eng. Sci. Proc. 12, 1064 (1991).Google Scholar
24Yoldas, B. E., Am. Ceram. Soc. Bull. 54, 286 (1975).Google Scholar
25Yoldas, B.E., Am. Ceram. Soc. Bull. 54, 289 (1975).Google Scholar
26Dynys, F.W. and Halloran, J.W., J. Am. Ceram. Soc. 65, 442 (1982).CrossRefGoogle Scholar
27Pach, L., Roy, R., and Komarneni, S., J. Mater. Res. 5, 278 (1990).Google Scholar
28Roy, R., Suwa, Y., and Komarneni, S., Science of Ceramic Chemical Processing, edited by Hench, L. L. and Ulrich, D. R. (John Wiley and Sons, New York, 1986), p. 247.Google Scholar
29Kumagi, M. and Messing, G.L., J. Am. Ceram. Soc. 67, C-230 (1984).Google Scholar
30Shelleman, R. A., Messing, G. L., and Kumagi, M., J. Non-Cryst. Solids 82, 277 (1986).CrossRefGoogle Scholar
31Messing, G.L., Kumagi, M., Shelleman, R.A., and McArdle, J.L., Science of Ceramic Chemical Processing, edited by Hench, L. L. and Ulrich, D. R. (John Wiley and Sons, New York, 1986), p. 259.Google Scholar
32Wei, W. and Halloran, J. W., J. Am. Ceram. Soc. 71 (7), 581 (1988).CrossRefGoogle Scholar
33Li, D.X. and Thomson, W.J., J. Mater. Res. 5, 1963 (1990).CrossRefGoogle Scholar
34Huling, J.C. and Messing, G.L., J. Am. Ceram. Soc. 74 (10), 2374 (1991).CrossRefGoogle Scholar
35Sundaresan, S. and Aksay, LA., J. Am. Ceram. Soc. 74 (10), 2388 (1991).CrossRefGoogle Scholar
36Mazdiyasni, K. S., Ceramics Int. 8, 42 (1982).CrossRefGoogle Scholar
37Brown, L. M. and Mazdiyasni, K. S., Inorg. Chem. 9, 2783 (1970).CrossRefGoogle Scholar
38Yoldas, B.E., Am. Ceram. Soc. Bull. 54, 286 (1975).Google Scholar
39Yoldas, B.E., Am. Ceram. Soc. Bull. 54, 289 (1975).Google Scholar
40Hecht, E. and Zajac, A., Optics (Addison-Wesley, Reading, MA, 1974), p. 297.Google Scholar
41Reed, J.W. and Chase, A.B., Acta Crystallogr. 15, 812 (1962).CrossRefGoogle Scholar
42Zhou, R S. and Snyder, R.L., Acta Crystallogr. B 47, 617 (1991).Google Scholar
43Chou, T.C. and Nieh, T.G., J. Am. Ceram. Soc. 74 (9), 2270 (1991).CrossRefGoogle Scholar
44Jayaram, V. and Levi, C.G., Acta Metall. 37 (2), 569 (1989).CrossRefGoogle Scholar
45Keith, M.L. and Roy, R., Am. Min. 39 (1&2), 1 (1954).Google Scholar
46Yamaguchi, O., Takeoka, K., Hirota, K., Takano, H., and Hayashida, A., J. Mater. Sci. 27 (5), 1261 (1992).CrossRefGoogle Scholar
47Glushkova, V. B., Krzhizhanovskaya, V. A., Egorova, O. N., Udalov, Y. P., and Kachalova, L. P., Izvestiya Akademii Nauk SSSR, Neorganicheskie Materaly 19 (1), 95 (1983).Google Scholar
48Parthasarathy, T.A., Mah, T., and Keller, K.A., J. Am. Ceram. Soc. (in press).Google Scholar
49Slyozov, V. V., Sov. Phys. Solid State 9, 927 (1967).Google Scholar
50Speight, M.V., Acta Metall. 16, 133 (1968).CrossRefGoogle Scholar
51Kirchner, H.O., Metall. Trans. 2, 2861 (1971).CrossRefGoogle Scholar
52Ardell, A.J., Acta Metall. 20, 601 (1972).Google Scholar
53Martin, J.W. and Doherty, R. D., Stability of Microstructure in Metallic Systems, Cambridge Solid State Science Series (Cambridge Univ. Press, 1976).Google Scholar
54Wynblatt, P. and Gjostein, N. A., Acta Metall. 24, 1165 (1976).Google Scholar
55Thompson, C.V., Acta Metall. 36 (11), 2929 (1988).CrossRefGoogle Scholar
56Hardy, S. C. and Voorhees, P. W., Metall. Trans. 19A, 2713 (1988).Google Scholar
57Lifshitz, I. M. and Slyozov, V. V., J. Phys. Chem. Solids 19, 35 (1961).CrossRefGoogle Scholar
58Wagner, C., Z. Elektrochem. 65, 581 (1961).Google Scholar
59Tsumuraya, K. and Miyata, Y., Acta Metall. 31 (4), 437 (1983).CrossRefGoogle Scholar
60Brown, L. C., Acta Metall. 37 (1), 71 (1989).CrossRefGoogle Scholar
61DeHoff, R.T., Acta Metall. Mater. 39 (10), 2349 (1991).CrossRefGoogle Scholar
62Voorhees, P.W. and Schaefer, R.L, Acta Metall. 35 (2), 327 (1987).CrossRefGoogle Scholar
63Pande, C.S., Acta Metall. 35 (11), 2671 (1987).CrossRefGoogle Scholar
64Anderson, M. P., Grest, G. S., and Srolovitz, D. J., Philos. Mag. B 59 (3), 293 (1989).CrossRefGoogle Scholar
65Hu, H. and Rath, B.B., Metall. Trans. 1, 3181 (1970).Google Scholar
66Ikegami, T. and Moriyoshi, Y., J. Am. Ceram. Soc. 68 (11), 597 (1985).CrossRefGoogle Scholar
67DiMilia, R. A., J. Am. Ceram. Soc. 72 (1), 33 (1989).Google Scholar
68Grest, G. S., Srolovitz, D. J., and Anderson, M. P., Acta Metall. 33 (3), 509 (1985).CrossRefGoogle Scholar
69Turnbull, D., Solid State Phys. 3, 225 (1956).Google Scholar
70Shi, G. and Seinfeld, J.H., J. Mater. Res. 6, 2091 (1991).Google Scholar
71Hoffman, D.W., Roy, R., and Komarneni, S., J. Am. Ceram. Soc. 67, 468 (1984).CrossRefGoogle Scholar
72Vilmin, G., Komarneni, S., and Roy, R., J. Mater. Res. 2, 489 (1987).CrossRefGoogle Scholar
73Porter, D. A. and Easterling, K. E., Phase Transformations in Metals and Alloys (Van Nostrand Reinhold, Wokingham, U.K., 1981).Google Scholar
74Keith, H.D. and Padden, F. J., J. Appl. Phys. 34 (8), 2409 (1963).CrossRefGoogle Scholar
75Spry, A., Metamorphic Textures (Pergamon Press, Oxford, New York, 1969).Google Scholar
76Srolovitz, D. J. and Safran, S.A., J. Appl. Phys. 60, 247 (1986).Google Scholar
77Miller, K.T., Lange, F.F., and Marshall, D.B., J. Mater. Res. 5, 151 (1990).CrossRefGoogle Scholar
78Werner, E., Acta Metall. 37 (7), 2047 (1989).CrossRefGoogle Scholar
79Carim, A. H., Turtle, B.A., Doughty, D. H., and Martinez, S.L., J. Am. Ceram. Soc. 74 (6), 1455 (1991).CrossRefGoogle Scholar
80Hsueh, C C. and Mecartney, M. L., J. Mater. Res. 6, 2208 (1991).CrossRefGoogle Scholar
81Avrami, M., J. Chem. Phys. 7, 1103 (1939).CrossRefGoogle Scholar
82Kolmogorov, A.E., Akad. Nauk. SSSR. IZV. Ser. Mat. 1, 355 (1937).Google Scholar
83Johnson, W. A. and Mehl, R. F., Trans. Am. Inst. Min. Engrs. 135, 416 (1939).Google Scholar
84Christian, J.W., The Theory of Transformations in Metals and Alloys, 2nd ed. (Pergamon Press, Oxford, 1975).Google Scholar
85Schmalzried, H., Solid State Reactions, 2nd ed. (Verlag Chemie Int., Weinheim, 1981).Google Scholar
86Stubican, V. S., Transport in Nonstoichiometric Compounds, NATO ASI Series, edited by Simkovich, G. and Stubican, V. S., 345 (1984).Google Scholar
87Monty, C., Cryst. Latt. Def. and Amorph. 18, 101 (1989).Google Scholar
88Keith, H.D. and Padden, F.J., J. Appl. Phys. 35 (4), 1286 (1964).CrossRefGoogle Scholar
89Hay, R. S. and Matson, L. E., Acta Metall. Mater. 39 (8), 1981 (1991).CrossRefGoogle Scholar
90Rollett, A. D., Srolovitz, D. J., Doherty, R. D., and Anderson, M. P., Acta Metall. 37 (2), 627 (1989).CrossRefGoogle Scholar
91Vandermeer, R. A. and Rath, B. B., Metall. Trans. 20A, 391 (1989).CrossRefGoogle Scholar
92Price, C.W., Acta Metall. Mater. 39, 1807 (1991).CrossRefGoogle Scholar
93Dynys, J.M., Coble, R.L., Coblenz, W.S., and Cannon, R.M., Sintering Processes, Materials Science Research, edited by Kuczynski, G. C., 13, 391 (1980).CrossRefGoogle Scholar
94Gaboriaud, R.J., Philos. Mag. A 44 (3), 561 (1981).CrossRefGoogle Scholar
95Brinker, C. J. and Scherer, G. W., Sol-Gel Science (Academic Press, Inc., San Diego, CA, 1990).Google Scholar