Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-14T19:09:55.743Z Has data issue: false hasContentIssue false

Photoconductivity of activated carbon fibers

Published online by Cambridge University Press:  31 January 2011

K. Kuriyama
Affiliation:
Center for Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
M.S. Dresselhaus
Affiliation:
Center for Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The conductivity and photoconductivity are measured on a high-surface-area disordered carbon material, i.e., activated carbon fibers, to investigate their electronic properties. This material is a highly disordered carbon derived from a phenolic precursor, having a huge specific surface area of 1000–2000 m2/g. Our preliminary thermopower measurements show that the dominant carriers are holes at room temperature. The x-ray diffraction pattern reveals that the microstructure is amorphous-like with Lc ≃ 10 Å. The intrinsic electrical conductivity, on the order of 20 S/cm at room temperature, increases by a factor of several with increasing temperature in the range 30–290 K. In contrast, the photoconductivity in vacuum decreases with increasing temperature. The magnitude of the photoconductive signal was reduced by a factor of ten when the sample was exposed to air. The recombination kinetics changes from a monomolecular process at room temperature to a bimolecular process at low temperatures, indicative of an increase in the photocarrier density at low temperatures. The high density of localized states, which limits the motion of carriers and results in a slow recombination process, is responsible for the observed photoconductivity.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

References

1Dacey, J. R., Quinn, D. F., and Gallagher, J. T., Carbon 4, 73 (1966).CrossRefGoogle Scholar
2Mclntosh, R., Haines, R. S., and Benson, G. C., J. Chem. Phys. 15, 17 (1947).CrossRefGoogle Scholar
3Smeltzer, W. W. and Mclntosh, R., Can. J. Chem. 31, 1239 (1953).CrossRefGoogle Scholar
4Blue, M. D. and Danielson, G. G., J. Appl. Phys. 28, 583 (1957).CrossRefGoogle Scholar
5Hanawa, T. and Kakinoki, J., Carbon 1, 403 (1964).CrossRefGoogle Scholar
6MacFarlane, J. M., Mclintock, I. S., and Orr, J. C., Phys. Status Solidi (a) 3, K239 (1970).CrossRefGoogle Scholar
7Mizushima, S. and Hirabayashi, Y., Carbon 6, 123 (1968).CrossRefGoogle Scholar
8Mclintock, I. S. and Orr, J. C., Carbon 6, 309 (1968).CrossRefGoogle Scholar
9Deitz, V. R. and MacFarlane, E. F., in Proceedings of the Fifth Carbon Conference (Pergamon Press, Oxford, 1963), Vol. 2, p. 219.CrossRefGoogle Scholar
10Mclintock, I. S. and Orr, J. C., Carbon 5, 291 (1967).CrossRefGoogle Scholar
11Hirabayashi, H. and Toyoda, H., in Proceedings of the Fourth Carbon Conference (Pergamon Press, Oxford, 1961), p. 227.CrossRefGoogle Scholar
12Carmona, F., Delhaes, P., Keryer, G., and Manceau, J. P., Solid State Commun. 14, 1183 (1974).CrossRefGoogle Scholar
13Saxena, R. R. and Bragg, R. H., J. Non-Cryst. Solids 28, 45 (1978).CrossRefGoogle Scholar
14Baker, D. F. and Bragg, R. H., Phys. Rev. B 28, 2219 (1983).CrossRefGoogle Scholar
15Armstrong, J. W., Lackson, C., and Marsh, H., Carbon 2, 239 (1964).CrossRefGoogle Scholar
16McMichael, B. D., Kmetko, E. A., and Mrozowski, S., J. Opt. Soc. Am. 44, 26 (1954).CrossRefGoogle Scholar
17Walker, P. L., Austin, L. G., and Tietjen, J. J., Carbon 2, 1710 (1965).CrossRefGoogle Scholar
18Maruyama, Y. and Inokuchi, H., Chem. Soc. of Jpn. Bull. 39, 1418 (1966).CrossRefGoogle Scholar
19Davis, E. A. and Shaw, R. F., J. Non-Cryst. Solids 2, 406 (1970).CrossRefGoogle Scholar
20Bücker, W., J. Non-Cryst. Solids 12, 115 (1973).CrossRefGoogle Scholar
21Mrozowski, S., Phys. Rev. 77, 838 (1950).CrossRefGoogle Scholar
22Mrozowski, S., Carbon 3, 305 (1965).CrossRefGoogle Scholar
23Mrozowski, S., Carbon 6, 841 (1968).CrossRefGoogle Scholar
24Mrozowski, S., Phys. Rev. 85, 609 (1952).CrossRefGoogle Scholar
25Mrozowski, S., Carbon 9, 97 (1971).CrossRefGoogle Scholar
26Mrozowski, S., Carbon 11, 433 (1973).CrossRefGoogle Scholar
27Mrozowski, S., J. Low Temp. Phys. 35, 231 (1979).CrossRefGoogle Scholar
28Nagata, H. and Yoshida, T., Chemical Economics, 44 (April 1977).Google Scholar
29Ikegami, S. and Shimazaki, K., Fuel and Combustion 54, 2 (1987).Google Scholar
30Ishizaki, N., Chemical Engineering, 24 (July 1984).Google Scholar
31Tai, K. and Shishido, N., Polymer Processing 35, 384 (1986).Google Scholar
32Arons, G. N. and Macnair, R. N., Textile Res. J. 42, 60 (1972).CrossRefGoogle Scholar
33Tanaka, E., Fuel and Combustion 54, 241 (1987).Google Scholar
34Yoshida, A., Tanahashi, I., Takeuchi, Y., and Nishino, A., IEEE CHMT-10, 100 (1987).Google Scholar
35Kasaoka, N., Sakata, Y., Tanaka, E., and Naito, R., J. Chem. Soc. Jpn. 5, 990 (1987).Google Scholar
36Nieh, G. M. and Grow, D. T., J. Colloid Interface Sci. 119, 280 (1987).CrossRefGoogle Scholar
37Herrick, J. W., in 23rd Ann. Tech. Conf. SPI Reinforced Plastics/ Composites, 16A (1968).Google Scholar
38Komatsubara, Y., Ida, S., Fujitsu, H., and Mochida, I., Fuel 63, 1738 (1984).CrossRefGoogle Scholar
39Mochida, I., Ogaki, M., Fujitsu, H., Komatsubara, Y., and Ida, S., Fuel 64, 1054 (1985).CrossRefGoogle Scholar
40Jayson, G. G., Lawless, T. A., and Fairhurst, D. J., J. Colloid Interface Sci. 86, 379 (1982).CrossRefGoogle Scholar
41Kaneko, K. and Shindo, N., Carbon 27, 815 (1989).CrossRefGoogle Scholar
42Steinbeck, J., Braunstein, G., Dresselhaus, M. S., Dresselhaus, G., and Venkatesan, T., in Extended Abstracts No. 8, Graphite Intercalation Compounds, edited by Dresselhaus, M. S., Dresselhaus, G., and Solin, S. A. (Materials Research Society, Pittsburgh, PA, 1986), p. 129.Google Scholar
43Mrozowski, S. and Chaberski, A., Phys. Rev. 104, 74 (1956).CrossRefGoogle Scholar
44Klein, C. A., J. Appl. Phys. 35, 2947 (1964).CrossRefGoogle Scholar
45Delhaes, P. and Carmona, F., in Chemistry and Physics of Carbon (Marcel Dekker, New York, 1981), Vol. 17.Google Scholar
46Vittorio, S. L. di, Dresselhaus, M. S., Endo, M., Issi, J-P., Piraux, L., and Bayot, V., J. Mater. Res. 6, 778 (1991).CrossRefGoogle Scholar
47Heremans, J., Carbon 23, 431 (1985).CrossRefGoogle Scholar
48Spain, I. L., Volin, K. J., Goldberg, H. A., and Kalnin, I., J. Phys. Chem. Solids 44, 839 (1983).CrossRefGoogle Scholar
49Mott, N., Conduction in Non-Crystalline Materials (Oxford University Press, 1987).Google Scholar
50Bube, R. H., Photoconductivity of Solids (Wiley, New York, 1960).Google Scholar
51Rose, A., Concepts in Photoconductivity and Allied Problems (Interscience Publishers, New York, 1963).Google Scholar
52Photoconductivity and Related Phenomena, edited by Mort, J. and Pai, D. M. (Elsevier, 1976).Google Scholar
53B¨cker, W., J. Non-Cryst. Solids 18, 11 (1975).CrossRefGoogle Scholar