Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-14T21:11:00.782Z Has data issue: false hasContentIssue false

Piezoelectric effect in epitaxial PbZr1−xTixO3 thin films near morphotropic phase boundary region

Published online by Cambridge University Press:  01 April 2005

Yong Kwan Kim
Affiliation:
Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 790-784, Korea
Sang Sub Kim
Affiliation:
Dept. of Materials Science and Engineering, Chonnam National University, Gwangju 500-757, Korea
Bongki Lee
Affiliation:
School of Advanced Materials Engineering, Kookmin University, Seoul 136-702, Korea
Hyunjung Shin
Affiliation:
School of Advanced Materials Engineering, Kookmin University, Seoul 136-702, Korea
Sunggi Baik*
Affiliation:
Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 790-784, Korea
*
a) Address all correspondence to this author. e-mail: sgbaik@postech.edu
Get access

Abstract

The relationship between crystal structure and piezo-response was investigated in epitaxially grown PbZr1−xTixO3 (PZT) thin films on Pt(001)/MgO(001) with a thin PbTiO3 interlayer. Insertion of the interlayer resulted in significant relaxation ofthe strain that could be developed in the course of deposition of the PZT films, consequently leading us to single out only the effect of composition. Composition of the morphotropic phase boundary (MPB), at which tetragonal and rhombohedral phases are mixed with the same volume fraction, was found to be ∼0.55 in Ti/(Zr + Ti) ratio in our films, which is close to the value for bulk polycrystalline PZT (∼0.50). The piezoelectric response peaks were two times higher in the MPB regime than in the single phase regime due to structural instability caused by the coexistence of two phases. The results indicate that epitaxial PZT films having the MPB composition are advantageous over those of other compositions for nano-storage devices based on scanning force microscopy.

Type
Rapid Communication
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Adachi, H. and Wasa, K.: Sputtering preparation of ferroelectric PLZT thin films and their optical applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 38, 645 (1991).CrossRefGoogle ScholarPubMed
2. Dimos, D.: Ferroelectric thin films for photonics: properties and applications. Ann. Rev. Mater. Sci. 251, 273 (1995).CrossRefGoogle Scholar
3. Hidaka, T., Maruyama, T., Sakai, I., Saitoh, M., Wills, L.A., Hiskes, R., Dicarolis, S.A., Amano, J. and Foster, C.M.: Characteristics of PZT thin films as ultra-high-density recording media. Integr. Ferroelectrics 17, 319 (1997).CrossRefGoogle Scholar
4. Colla, E.L., Taylor, D.V., Hong, S., Tagantsev, A.K. and Setter, N.: Direct observation of region by region suppression of the switchable polarization (fatigue) in Pb(Zr,Ti)O3 thin film capacitors with Pt electrodes. Appl. Phys. Lett. 72, 2763 (1998).CrossRefGoogle Scholar
5. Hong, J.W., Jo, W., Kim, D.C., Cho, S.M., Nam, H.J., Lee, H.M. and Bu, J.U.: Nanoscale investigation of domain retention in preferentially oriented PbZr0.53Ti0.47O3 thin films on Pt and on LaNiO3 . Appl. Phys. Lett. 75, 3183 (1999).CrossRefGoogle Scholar
6. Grossmann, M., Bolten, D., Lohse, O., Boettger, U., Waser, R. and Tiedke, S.: Correlation between switching and fatigue in PbZr0.3Ti0.7O3 thin films. Appl. Phys. Lett. 77, 1894 (2000).CrossRefGoogle Scholar
7. Tybell, T., Ahn, C.H. and Triscone, J-M.: Control and imaging of ferroelectric domains over large areas with nanometer resolution in atomically smooth epitaxial Pb(Zr0.2Ti0.8)O3 thin films. Appl. Phys. Lett. 72, 1454 (1998).CrossRefGoogle Scholar
8. Nagarajan, V., Roytburd, A.L., Stanishevsky, A., Prasertchoung, S., Zhao, T., Chen, L., Melnggailis, J., Auciello, O. and Ramesh, R.: Dynamics of ferroelastic domains in ferroelectric thin films. Nature Mater. 2, 43 (2003).CrossRefGoogle ScholarPubMed
9. Bühlmann, S., Dwir, B., Baborowski, J. and Muralt, P.: Size effect in mesoscopic epitaxial ferroelectric structures: Increase of piezoelectric response with decreasing feature size. Appl. Phys. Lett. 80, 3195 (2002).CrossRefGoogle Scholar
10. Lee, K.S., Kim, Y.K., Kim, J., Jung, I.S. and Baik, S.: In situ observation of ferroelectric 90°-domain switching in epitaxial Pb(Zr, Ti)O3 thin films by synchrotron x-ray diffraction. Appl. Phys. Lett. 79, 2444 (2001).CrossRefGoogle Scholar
11. Kim, Y.K., Kim, S.S., Shin, H. and Baik, S.: Thickness effect of ferroelectric domain switching in epitaxial PbTiO3 thin films on Pt(001)/MgO(001). Appl. Phys. Lett. 84, 5085 (2004).CrossRefGoogle Scholar
12. Jaffe, B., Cook, W.R. and Jaffe, H.: Piezoelectric Ceramics (Academic Press, London, U.K., 1971).Google Scholar
13. Hiboux, S., Muralt, P. and Maeder, T.: Domain and lattice contributions to dielectric and piezoelectric properties of Pb(Zr x , Ti1− x )O3 thin films as a function of composition. J. Mater. Res. 14, 4307 (1999).CrossRefGoogle Scholar
14. Ledermann, N., Muralt, P., Baborowski, J., Gentil, S., Mukati, K., Cantoni, M., Seifert, A. and Setter, N.: {100}-textured, piezoelectric Pb(Zr x , Ti1− x )O3 thin films for MEMS: Integration, deposition and properties. Sens. Actuators A 105, 162 (2003).CrossRefGoogle Scholar
15. Jeng, J., Zhang, M., Wang, L. and Lin, C.: Influence of lead titanate seed layer on orientation behavior and ferroelectric characteristics of sol-gel derived PZT thin films. J. Phys.: Condens. Matter 11, 1139 (1999).Google Scholar
16. Lee, K. and Baik, S. (unpublished).Google Scholar
17. Oh, S.H. and Jang, H.M.: Epitaxial Pb(Zr,Ti)O3 thin films with coexisting tetragonal and rhombohedral phases. Phys. Rev. B 63, 132101 (2001).Google Scholar
18. Ahn, K.H., Kim, S.S. and Baik, S.: Change of growth orientation in Pt films epitaxially grown on MgO(001) substrates by sputtering. J. Mater. Res. 17, 2334 (2002).CrossRefGoogle Scholar
19. Kim, Y.K., Lee, K. and Baik, S.: Domain structure of epitaxial PbTiO3 thin films on Pt(001)/MgO(001) substrates. J. Appl. Phys. 95, 236 (2004).CrossRefGoogle Scholar
20. Auciello, O., Gruverman, A., Tokumoto, H., Prakash, S.A., Aggarwal, S. and Ramesh, R.: Nanoscale scanning force imaging of polarization phenomena in ferroelectric thin films. MRS Bull. 23(1)33(1998).CrossRefGoogle Scholar
21. Durkan, C., Welland, M.E., Chu, D.P. and Migliorato, P.: Probing domains at the nanometer scale in piezoelectric thin films. Phys. Rev. B 60, 16198 (1999).CrossRefGoogle Scholar
22. Du, X-H., Zheng, J., Belegundu, U. and Uchino, K.: Crystal orientation dependence of piezoelectric properties of lead zirconate titanate near the morphotropic phase boundary. Appl. Phys. Lett. 72, 2421 (1998).CrossRefGoogle Scholar
23. Guo, R., Cross, L.E., Park, S-E., Noheda, B., Cox, D.E. and Shirane, G.: Origin of the high piezoelectric response in PbZr1− x Ti x O3 . Phys. Rev. Lett. 84, 5423 (2000).CrossRefGoogle Scholar
24. Filho, A.G. Souza, Lima, K.C.V., Ayala, A.P., Guedes, I., Freire, P.T.C., Melo, F.E.A., Filho, J. Mendes, Araujo, E.B. and Eiras, J.A.: Raman scattering study of the PbZr1− x Ti x O3 system: Rhombohedral-monoclinic-tetragonal phase transitions. Phys. Rev. B 66, 132107 (2002).CrossRefGoogle Scholar
25. Ragini, , Ranjan, R., Mishra, S.K. and Pandey, D.: Room temperature structure of Pb(Zr x Ti1– x O3) around the morphotropic phase boundary region: A Rietveld study. J. Appl. Phys. 92, 3266 (2002).CrossRefGoogle Scholar