Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-28T00:29:11.576Z Has data issue: false hasContentIssue false

Plasticity in ion-irradiated austenitic stainless steels

Published online by Cambridge University Press:  31 January 2011

C. Robertson
Affiliation:
Section de Recherches de Métallurgie Physique, Direction des Technologies Avancées, Commissariat à l'Energie Atomique, Centre d'Etudes de Saclay, 91191 Gif-sur-Yvette, France
S. Poissonnet
Affiliation:
Section de Recherches de Métallurgie Physique, Direction des Technologies Avancées, Commissariat à l'Energie Atomique, Centre d'Etudes de Saclay, 91191 Gif-sur-Yvette, France
L. Boulanger
Affiliation:
Section de Recherches de Métallurgie Physique, Direction des Technologies Avancées, Commissariat à l'Energie Atomique, Centre d'Etudes de Saclay, 91191 Gif-sur-Yvette, France
Get access

Abstract

In an attempt to take advantage of charged particle irradiation for studying the effects of irradiation on the mechanical properties of metals, we developed an experimental procedure based on the combination of transmission electron microscopy (TEM) and submicron indentation of ion-implanted layers. We applied this technique to industrial 316L steel, irradiated with krypton ions up to 10 dpa at 873 K. A domain where the penetration range of the ions and the indentation depth are compatible has been identified. The indentation tests then yielded a good estimate of hardness and bulk modulus, while the TEM observations provide microstructural information in the plastic regime. It is shown that the combination of the two techniques is necessary for rationalizing the observed results.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Garner, F. A., Materials Science and Technology, edited by Cahn, R. W., Haasen, P., and Kramer, E. J. (1994).Google Scholar
2.Yoshida, N., Heinish, H. L., Muroga, T., Araki, K., and Kiritani, M., J. Nucl. Mater. 179–181, 1078 (1991).CrossRefGoogle Scholar
3.Grossbeck, M. L., Maziasz, P. J., and Rowcliffe, A. F., J. Nucl. Mater. 191–194, 808 (1992).Google Scholar
4.Jones, R. H., Bradley, E. R., and Styris, D. L., J. Nucl. Mater. 116, 297 (1983).CrossRefGoogle Scholar
5.Suzuki, M., Sato, A., Mori, T., Nakagawa, J., Yamamoto, N., and Shiraishi, H., Philos. Mag. A 65, 1309 (1992).CrossRefGoogle Scholar
6.Oliver, W. C. and Pharr, G. M., J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
7.Zielinski, W., Huang, H., and Gerberich, W. W., J. Mater. Res. 8, 1300 (1993).CrossRefGoogle Scholar
8.Zielinski, W., Huang, H., Venkataraman, S. K., and Gerberich, W. W., Philos. Mag. 72, 1221 (1995).CrossRefGoogle Scholar
9.Harvey, S., Huang, H., Venkataraman, S., and Gerberich, W. W., J. Mater. Res. 8, 1291 (1993).Google Scholar
10.Page, T. F., Oliver, W. C., and McHargue, C. J., J. Mater. Res. 8, 450 (1992).CrossRefGoogle Scholar
11.Garner, F. A. and Gelles, D. S., J. Nucl. Mater. 159, 286 (1988).CrossRefGoogle Scholar
12.Johnson, K. L., Contact Mechanics (Cambridge University Press, 1985).CrossRefGoogle Scholar
13.Johnson, K. L., J. Mech. Phys. Solids 18, 155 (1970).CrossRefGoogle Scholar
14.Hill, R., The Mathematical Theory of Plasticity (Oxford University Press, Oxford, 1950).Google Scholar
15.Armanet, F.et al., Les aciers inoxydables, Les éditions de physique (1990).Google Scholar
16.Gerberich, W. W., Venkataraman, S. K., Huang, H., Harvey, S. E., and Kohlstedt, D. L., Acta Metall. Mater. 43, 1569 (1995).Google Scholar
17.Gerberich, W. W., Nelson, J. C., Lilleodden, E. T., Anderson, P., and Wyrobek, J. T., Acta Metall. Mater. 44, 3585 (1996).CrossRefGoogle Scholar
18.Stelmashenko, N. A., Walls, M. G., Brown, L. M., and Milman, YU. V., Acta Metall. Mater. 41, 2855 (1993).CrossRefGoogle Scholar
19.Hirth, J. P. and Lothe, J., Theory of Dislocations, 2nd ed. (John Wiley and Sons, New York, 1992).Google Scholar
20.Cauvin, R., Etude expérimentale et théorique de la stabilité des solutions solides sous irradiation, Université de Nancy-1, Thèse de doctorat (1981).Google Scholar