Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T16:31:13.978Z Has data issue: false hasContentIssue false

The purification of elemental sulfur

Published online by Cambridge University Press:  31 January 2011

Sherman Susman
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
S. Clark Rowland*
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
Kenneth J. Volin
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
*
a)Permanent address: Department of Physics, Andrews University, Berrien Springs, Michigan 49104.
Get access

Abstract

Sulfur has been purified by a dynamic pyrolysis procedure that takes into account the unique viscosity-temperature relationship of the liquid. An apparatus is described that incorporates gas-bubbling and rocking to overcome diffusion-limited kinetics. For the first time, a mechanism is proposed for the pyrolytic purification of sulfur based upon Carsul formation and the H2S ↔ H2Sx equilibrium. Infrared methods are delineated for qualitative analysis and quantitative estimates of anion contaminants, including the omnipresent hydrocarbon impurities. Our purified sulfur has a total carbon, oxygen, and hydrogen impurity level of <10 μg/g.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Meyer, B., Elemental Sulfur (Interscience Publishers, New York, 1965).Google Scholar
2.Touro, F. J. and Wiewiorowski, T. K., J. Phys. Chem. 70, 239 (1966).CrossRefGoogle Scholar
3.Susman, S., Price, D. L., Volin, K. J., and Dejus, R. J., J. Non-Cryst. Solids 106, 26 (1988).CrossRefGoogle Scholar
4. USBM-Plb is the designation given by the U.S. Bureau of Mines (see Ref. 8) to the sulfur prepared at the National Bureau of Standards (see Ref. 5).Google Scholar
5.Murphy, T. J., Clabaugh, W. S., and Gilchrist, R., J. Res. Natl. Bur. Stand. Sec. A 64, 355 (1960).CrossRefGoogle Scholar
6.West, E. D., J. Am. Chem. Soc. 81, 29 (1959).CrossRefGoogle Scholar
7.O'Hare, P. A. G., Settle, J. L., and Hubbard, W. N., Trans. Faraday Society 62, 588 (1966).Google Scholar
8.Good, W. D., Lacina, J. L., and McCullough, J. P., J. Am. Chem. Soc. 82, 5589 (1960).CrossRefGoogle Scholar
9. A redetermination of the enthalpy of formation of sulfur hexafluoride and its thermodynamic properties is presented elsewhere: O'Hare, P. A. G., Susman, S., Rowland, S. C., and Volin, K. J., J. Chem. Thermodyn., submitted.Google Scholar
10.von Wartenberg, H., Z.Anorg. Allg. Chem. 286, 243 (1956).CrossRefGoogle Scholar
11.Hyne, J. B., Hydrocarbon Processing 61 (9), 241 (1982).Google Scholar
12.Bacon, R. F. and Fanelli, R., Ind. Eng. Chem. 34, 1043 (1942).CrossRefGoogle Scholar
13.Bacon, R. F. and Fanelli, R., J. Am. Chem. Soc. 65, 639 (1943).CrossRefGoogle Scholar
14.von Wartenberg, H., Z. Anorg. Allg. Chem. 297, 226 (1958).CrossRefGoogle Scholar
15.Feher, F., Sauer, K. H., and Monien, H., Z. Anal. Chem. 192, 389 (1963).CrossRefGoogle Scholar
16.Feher, F. and Lutz, H. D., Z. Anorg. Allg. Chem. 334, 235 (1965).CrossRefGoogle Scholar
17.Feher, F., Lutz, H. D., and Obst, K., Z. Anal. Chem. 224, 407 (1967).CrossRefGoogle Scholar
18.Wiewiorowski, T. K., Matson, R. F., and Hodges, C. T., Anal. Chem. 37, 1080 (1965).CrossRefGoogle Scholar
19.Wiewiorowski, T. K. and Touro, F. J., J. Phys. Chem. 70, 234 (1966).CrossRefGoogle Scholar
20.Schwalm, W. J. and Hyne, J. B., Alberta Sulphur Research Ltd. Quarterly Bulletin 17 (2), 19 (1980).Google Scholar
21. The absorptivity for OH in sulfur is assumed to be the same as in vitreous silica.Google Scholar
22.Berzelius, J. J., Jahresber 20, Sec. 2, 13 (1841).Google Scholar
23.Hyne, J. B., Chemtech 12, 628 (1982).Google Scholar