Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-05T02:23:20.942Z Has data issue: false hasContentIssue false

Reactive phase formation in sputter-deposited Ni/Al multilayer thin films

Published online by Cambridge University Press:  31 January 2011

K. Barmak
Affiliation:
Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015
C. Michaelsen
Affiliation:
Institute of Materials Research, GKSS Research Center, 21502 Geesthacht, Germany
G. Lucadamo
Affiliation:
Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015
Get access

Abstract

We have investigated reactive phase formation in magnetron sputter-deposited NiyAl multilayer films with a 1 : 3 molar ratio and various periodicities, L, ranging from 320 nm down to a codeposited film with zero effective periodicity. The films were studied by x-ray diffraction, differential scanning calorimetry, electrical resistance measurements, and transmission electron microscopy. We find that Ni and Al have reacted during deposition to form the B2 NiAl phase and an amorphous phase. The formation of these phases substantially reduces the driving force for subsequent reactions and explains why nucleation kinetics become important for these reactions. Depending on the periodicity, these reactions result in the formation of NiAl3 or Ni2Al9 followed by NiAl3. Detailed calorimetric analysis reveals differences in the nucleation and growth behavior of NiAl3 compared with other studies.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Colgan, E. G., Mater. Sci. Rep. 5, 1 (1990).Google Scholar
2. For a current review of powder metallurgy process for Nb/Al superconductor wire fabrication, see Thieme, C. L. H., Ph.D. Thesis, Twente University (1988).Google Scholar
3.Lin, K-L. and Hwang, C-W., Surf. Coat. Technol. 56, 81 (1992).Google Scholar
4.Streiff, R., Cerclier, O., and Boone, D. H., Surd. Coat. Technol. 32, 111 (1987).Google Scholar
5.Wood, J. H. and Goldman, E. H., in Superalloys II, edited by Sims, C. T., Stoloff, N., and Hagel, W. C. (Wiley, New York, 1987), p. 359.Google Scholar
6.Mayer, J. W. and Lau, S. S., Electronic Materials Science (McMillan Publishing Company, New York, 1990), pp. 307308.Google Scholar
7.Schwarz, R. B. and Johnson, W. L., Phys. Rev. Lett. 51, 415 (1983).CrossRefGoogle Scholar
8.Clemens, B. M. and Sinclair, R., MRS Bull. XV (2), 1938 (1990), and references therein.Google Scholar
9.Johnson, W. L., Prog. Mater. Sci. 30, 81134 (1986).Google Scholar
10.Coffey, K. R., Barmak, K., Rudman, D. A., and Foner, S., in Phase Transformation Kinetics in Thin Films, edited by M., Chen, Thompson, M. O., Schwarz, R., and Libera, M. (Mater. Res. Soc. Symp. Proc. 230, Pittsburgh, PA, 1992), p. 55.Google Scholar
11.Coffey, K. R., Barmak, K., Rudman, D. A., and Foner, S., J. Appl. Phys. 72, 1341 (1992).Google Scholar
12.Coffey, K. R., Clevenger, L. A., Barmak, K., Rudman, D. A., and Thompson, C. V., Appl. Phys. Lett. 55, 852 (1989).Google Scholar
13.Barmak, K., Michaelsen, C., Rickman, J., and Dahms, M., Mater. Res. Soc. Symp. Proc. (1996, in press).Google Scholar
14.Ma, E., Thompson, C. V., and Clevenger, L. A., J. Appl. Phys. 69, 2211 (1991).Google Scholar
15.Michaelsen, C., Wöhlert, S., and Bormann, R., in Polycrystalline Thin Films—Structure, Texture, Properties and Applications, edited by Barmak, K., Parker, M. A., Floro, J. A., Sinclair, R., and Smith, D. A. (Mater. Res. Soc. Symp. Proc. 343, Pittsburgh, PA, 1994), p. 205; C. Michaelsen, S. Wöhlert, R. Bormann, and K. Barmak, in Thermodynamics and Kinetics of Phase Transformations, edited by J. S. Im, B. Park, A. L. Greer, and G. B. Stephenson (Mat. Res. Symp. Proc. 398, Pittsburgh, PA, 1996), p. 245.Google Scholar
16.Clevenger, L. A. and Thompson, C. V., J. Appl. Phys. 67, 1325 (1990).Google Scholar
17.Clevenger, L. A., Thompson, C. V., de Avillez, R. R., and Ma, E., J. Vac. Sci. Technol. A8, 1566 (1990).Google Scholar
18.Barmak, K., Coffey, K. R., Rudman, D. A., and Foner, S., in Phase Transformation Kinetics in Thin Films, edited by Chen, M., Thompson, M. O., Schwarz, R., and Libera, M. (Mater. Res. Soc. Symp. Proc. 230, Pittsburgh, PA, 1992), p. 61.Google Scholar
19.Barmak, K. and Coffey, K. R., in Phase Transformation in Thin Films—Thermodynamics and Kinetics, edited by Atzmon, M., Greer, A. L., Harper, J. M. E., and Libera, M. R. (Mater. Res. Soc. Symp. Proc. 311, Pittsburgh, PA, 1993), p. 51.Google Scholar
20.Coffey, K. R. and Barmak, K., Acta Metall. Mater. 42, 2905 (1994).Google Scholar
21.Edelstein, A. S., Everett, R. K., Richardson, G. Y., Qadri, S. B., Altman, E. I., Foley, J. C., and Perepezko, J. H., J. Appl. Phys. 76, 7850 (1994).CrossRefGoogle Scholar
22.Edelstein, A. S., Everett, R. K., Richardson, G. R., Qadri, S. B., Foley, J. C., and Perepezko, J. H., Mater. Sci. Eng. A195, 13 (1995).Google Scholar
23.Barmak, K., Michaelsen, C., Bormann, R., and Lucadamo, G., in Structure and Properties of Multilayered Thin Films, edited by Nguyen, T. D., Lairson, B. M., Clemens, B. M., Shin, S-C., and Sato, K. (Mater. Res. Soc. Symp. Proc. 382, Pittsburgh, PA, 1995), p. 33; G. Lucadamo, K. Barmak, and C. Michaelsen, in Thermodynamics and Kinetics of Phase Transformations, edited by J. S. Im, B. Park, A. L. Greer, and G. B. Stephenson ( Mater. Res. Soc. Symp. Proc. 398, Pittsburgh, PA, 1996), p. 227.Google Scholar
24.Thompson, C. V., J. Mater. Res. 7, 367 (1992).CrossRefGoogle Scholar
25.Klepeis, S. J., Benedict, J. P., and Anderson, R. M., in Specimen Preparation for Transmission Electron Microscopy, edited by Bravman, J. C., Anderson, R. M., and McDonald, M. L. (Mater. Res. Soc. Symp. Proc. 115, Pittsburgh, PA, 1988), p. 179.Google Scholar
26.Cullity, B. D., Elements of X-ray Diffraction, 2nd ed. Addison-Wesley, 1978), p. 102.Google Scholar
27.Clemens, B. M. and Gay, J. G., Phys. Rev. B 35, 9337 (1987).Google Scholar
28.McWhan, D. B., Synthetic Modulated Structures, edited by Chang, L. L. and Giessen, B. C., Orlando (Academic, Orlando, FL, 1985).Google Scholar
29.Michaelsen, C., Philos. Mag. A72, 813 (1995).Google Scholar
30.Eridon, J., Rehn, L., and Was, G., Nucl. Instrum. Methods B19/20, 626 (1987).CrossRefGoogle Scholar
31.Hung, L. S., Nastasi, M., Gyulai, J., and Mayer, J. W., Appl. Phys. Lett. 42, 672 (1983).Google Scholar
32.Larsen, K. Kyllesbech, Karpe, N., Bøttiger, J., and Bormann, R., J. Mater. Res. 7, 861 (1992).Google Scholar
33.Kubaschewski, O. and Alcock, C. B., Metallurgical Thermochemistry (Pergamon Press, 1983), p. 302.Google Scholar
34.Kissinger, H. E., J. Res. Natl. Bur. Std. 57, 217 (1956).CrossRefGoogle Scholar
35.Boswell, P. G., J. Thermal Anal. 18, 353 (1980).Google Scholar
36.Michaelsen, C., Lucadamo, G., and Barmak, K., J. Appl. Phys. (in press).Google Scholar
37.Christian, J. W., The Theory of Transformations in Metals and Alloys, Part I: Equilibrium and General Kinetic Theory, 2nd ed. (Pergamon, Oxford, 1975).Google Scholar
38.Legresy, J. M., Blanpain, B., and Mayer, J. W., J. Mater. Res. 3, 884 (1988).Google Scholar
39.Blanpain, B., Allen, L. H., Legresy, J. M., and Mayer, J. W., Phys. Rev. B 39, 13067 (1989).CrossRefGoogle Scholar
40.Michaelsen, C., Piepenbring, M., and Krebs, H. U., Colloque de Physique C4, 157 (1990).Google Scholar
41.De Avillez, R. R., Clevenger, L. A., Thompson, C. V., and Tu, K. N., J. Mater. Res. 5, 593 (1990).Google Scholar
42.Kiauka, W., van Cuyck, C., and Keune, W., Mater. Sci. Eng. B12, 273 (1992).CrossRefGoogle Scholar
43.Ma, E., Clevenger, L. A., and Thompson, C. V., J. Mater. Res. 7, 1350 (1992).Google Scholar
44.Kopcewicz, M. and Williamson, D. L., J. Appl. Phys. 74, 4363 (1993).Google Scholar
45.Casanove, M. J., Snoeck, E., Roucau, C., Hutchison, J. L., Jiang, Z., and Vidal, B., in Polycrystalline Thin Films—Structure, Texture, Properties and Applications, edited by Barmak, K., Parker, M. A., Floro, J. A., Sinclair, R., and Smith, D. A. (Mater. Res. Soc. Symp. Proc. 343, Pittsburgh, PA, 1994), p. 277.Google Scholar
46.Busch, R., Gärtner, F., Schneider, S., Bormann, R., and Haasen, P., in Polycrystalline Thin Films—Structure, Texture, Properties and Applications, edited by Barmak, K., Parker, M. A., Floro, J. A., Sinclair, R., and Smith, D. A. (Mater. Res. Soc. Symp. Proc. 343, Pittsburgh, PA, 1994), p. 229.Google Scholar
47.Hufnagel, T. C., Brennan, S., Payne, A. P., and Clemens, B. M., J. Mater. Res. 7, 1976 (1992).Google Scholar
48.Clemens, B. M. and Hufnagel, T. C., J. Alloys Compounds 194, 221 (1993).Google Scholar
49.Perepezko, J. H. and Furrer, D. U., in Dispersion Strengthened Aluminum Alloys, edited by Kim, Y-W. and Griffith, W. M. (TMSAIME, Warrendale, PA, 1988), p. 77.Google Scholar
50.Rickman, J. M., Tong, W. S., and Barmak, K., Acta Mater. (in press).Google Scholar
51.Holzer, J. C. and Kelton, K. F., Acta Metall. Mater. 39, 1833 (1991).Google Scholar