Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-30T20:50:13.153Z Has data issue: false hasContentIssue false

Research opportunities on clusters and cluster-assembled materials—A Department of Energy, Council on Materials Science Panel Report*

Published online by Cambridge University Press:  31 January 2011

R. P. Andres
Affiliation:
School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907
R. S. Averback
Affiliation:
Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801
W. L. Brown
Affiliation:
AT & T Bell Laboratories, Murray Hill, New Jersey 07974
L. E. Brus
Affiliation:
AT & T Bell Laboratories, Murray Hill, New Jersey 07974
W. A. Goddard III
Affiliation:
Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125
A. Kaldor
Affiliation:
Resource Chemistry Laboratory, Exxon Research and Engineering Company, Annandale, New Jersey 08801
S. G. Louie
Affiliation:
Department of Physics, University of California at Berkeley, Berkeley, California 94720
M. Moscovits
Affiliation:
Department of Chemistry, University of Toronto, Toronto M5S 1A1, Canada
P. S. Peercy
Affiliation:
Compound Semiconductor and Device Research Department, Sandia National Laboratories, Albuquerque, New Mexico 87185
S. J. Riley
Affiliation:
Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439
R. W. Siegel
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
F. Spaepen
Affiliation:
Division of Applied Sciences, Harvard University, Cambridge, Massachusetts 02138
Y. Wang
Affiliation:
Central Research Department, E. I. DuPont de Nemours & Co., Wilmington, Delaware 19898
Get access

Abstract

The Panel was charged with assessing the present scientific understanding of the size-dependent physical and chemical properties of clusters, the methods of synthesis of macroscopic amounts of size-selected clusters with desired properties, and most importantly, the possibility of their controlled assembly into new materials with novel properties. The Panel was composed of both academic and industrial scientists from the physics, chemistry, and materials science communities, and met in January 1988.

In materials (insulators, semiconductors, and metals) with strong chemical bonding, there is extensive spatial delocalization of valence electrons, and therefore the bulk physical properties which depend upon these electrons develop only gradually with cluster size. Recent research using supersonic-jet, gas-aggregation, colloidal, and chemical-synthetic methods indeed clearly establishes that intermediate size clusters have novel and hybrid properties, between the molecular and bulk solid-state limits. A scientific understanding of these transitions in properties has only been partially achieved, and the Panel believes that this interdisciplinary area of science is at the very heart of the basic nature of materials. In Sec. V (Future Challenges and Opportunities), a series of basic questions for future research are detailed. Each question has an obvious impact on our potential ability to create new materials.

Present methods for the synthesis of useful amounts of size-selected clusters, with surface chemical properties purposefully controlled and/or modified, are almost nonexistent, and these fundamentally limit our ability to explore the assembly of clusters into potentially novel materials. While elegant spectroscopic and chemisorption studies of size-selected clusters have been carried out using molecular-beam technologies, there are no demonstrated methods for recovery and accumulation of such samples. Within the past year, the first reports of the chemical synthesis of clusters with surfaces chemically modified have been reported for limited classes of materials. Apparatus for the accumulation and consolidation of nanophase materials have been developed, and the first promising studies of their physical properties are appearing. In both the chemical and nanophase synthesis areas, clusters with a distribution of sizes and shapes are being studied. Progress on macroscopic synthetic methods for size-selected clusters of controlled surface properties is the most important immediate goal recognized by the Panel. Simultaneous improvement in physical characterization will be necessary to guide synthesis research.

Assuming such progress will occur, the Panel suggests that self-assembly of clusters into new elemental polymorphs and new types of nanoscale heterogeneous materials offers an area of intriguing technological promise. The electrical and optical properties of such heterogeneous materials could be tailored in very specific ways. Such ideas are quite speculative at this time; their implementation critically depends upon controlled modification of cluster surfaces, and upon development of characterization and theoretical tools to guide experiments.

The Panel concluded that a number of genuinely novel ideas had been enunciated, and that in its opinion some would surely lead to exciting new science and important new materials.

Type
Materials Reports
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Physics and Chemistry of Small Clusters, edited by Jena, P.Rao, B. K. and Khanna, S. N. (Plenum Press, New York, 1987).CrossRefGoogle Scholar
2Bras, L.E.J. Phys. Chem. 90, 2555(1986).CrossRefGoogle Scholar
3Gleiter, H. in Deformation of Polycrystals: Mechanisms and Microstructures, edited by Hansen, N.Horsewell, A.Leffers, T. and Lilholt, H. (Risø National Laboratory, Roskilde, Denmark, 1981), p. 15.Google Scholar
4Birringer, R.Herr, U. and Gleiter, H.Suppl. Trans. Jpn. Inst. Met. 27, 43(1986).Google Scholar
5Siegel, R. W. and Hahn, H. in Current Trends in the Physics of Materials, edited by Yussouff, M. (World Scientific Publ. Co., Singapore, 1987), p. 403.Google Scholar
6Carey Lea, M., Am. J. Sci. 37, 479(1889).Google Scholar
7Turkevich, J.Stevenson, P. C. and Hillier, J.Discuss. Faraday Soc. 11, 55(1951).CrossRefGoogle Scholar
8Wilenzick, R.M.Russell, D.C.Morriss, R.H. and Marshall, S.W.J. Chem. Phys. 47, 533(1967).CrossRefGoogle Scholar
9Lin, S.T.Franklin, M.T. and Klabunde, K. J.Langmuir 2, 259(1986).CrossRefGoogle Scholar
10Rossetti, R.Ellison, J. L.Gibson, H. M. and Brus, L. E.J. Chem. Phys. 80, 4464(1984).CrossRefGoogle Scholar
11Meyer, M.Walberg, C.Kurihara, K. and Fendler, J. H.J. Chem. Soc. Chem. Commun., 90(1984).Google Scholar
12Wang, Y.Suna, A.Mahler, W. and Kasowski, R.J. Chem. Phys. 87, 7315(1987).CrossRefGoogle Scholar
13Borrelli, N. F.Hall, D. W.Holland, H. J. and Smith, D. W.J. Appl. Phys. 61, 5399(1987).CrossRefGoogle Scholar
14Fojtik, A.Weller, H.Koch, U. and Henglein, A.Ber. Bunsenges. Phys. Chem. 88, 969(1984).CrossRefGoogle Scholar
15Steigerwald, M.L.Alivisatos, A. P.Gibson, J. M.Harris, T. D.Korean, R.Muller, A.J.Thayer, A.M.Duncan, T.M.Douglass, D.C. and Brus, L.E.J. Am. Chem. Soc. 110, 3046(1988).CrossRefGoogle Scholar
16Holm, R.H.Ace. Chem. Res. 10, 427(1977).CrossRefGoogle Scholar
17Teo, Boon K.Keating, K. and Kao, Y-H.J. Am. Chem. Soc. 109, 3494(1987).CrossRefGoogle Scholar
18Wang, Y. and Herron, N.J. Phys. Chem. 91, 257(1987).CrossRefGoogle Scholar
19Herron, N.Wang, Y.Eddy, M.Stucky, G.Cox, D. E.Moller, K. and Bein, T.J. Am. Chem. Soc. 111, 530(1989).CrossRefGoogle Scholar
20Uyeda, R.J. Cryst. Growth 24, 69(1974).CrossRefGoogle Scholar
21Granqvist, C.G. and Buhrman, R. A.J. Appl. Phys. 47, 2200(1976).CrossRefGoogle Scholar
22Abe, H.Schulze, W. and Tesche, B.Chem. Phys. 47, 95(1980).CrossRefGoogle Scholar
23Sattler, K.Miihlbach, J. and Recknagel, E.Phys. Rev. Lett. 45, 821(1980).CrossRefGoogle Scholar
24Bowles, R.S.Kolstad, J.J.Calo, J.M. and Andres, R.P.Surf. Sci. 106, 117(1981).CrossRefGoogle Scholar
25Choi, E. and Andres, R. P. in Physics and Chemistry of Small Clusters, edited by Jena, P.Rao, B.K. and Khanna, S.N. (Plenum Press, New York, 1987), p. 61.CrossRefGoogle Scholar
26Tremblay, M.E.Smith, B.W.Long, M. B. and Winefordner, J. D.Spectrosc. Lett. 20, 311(1987).CrossRefGoogle Scholar
27Liu, Y.Zhang, Q-L.Tittel, F. K.Curl, R. F. and Smalley, R. E.J. Chem. Phys. 85, 7434(1986).CrossRefGoogle Scholar
28Morse, M.D.Chem. Rev. 86, 1049(1986).CrossRefGoogle Scholar
29LaiHing, K.Wheeler, R.G.Wilson, W. L. and Duncan, M.A.J. Chem. Phys. 87, 3401(1987).CrossRefGoogle Scholar
30Rohlfing, E. A.Cox, D.M.Petkovic-Luton, R., and Kaldor, A.J. Phys. Chem 88, 6227(1984).CrossRefGoogle Scholar
31LaiHing, K.Cheng, P. Y. and Duncan, M. A.J. Phys. Chem. 91, 6521(1987).CrossRefGoogle Scholar
32Cannon, W.R.Danforth, S.C.Flint, J.H.Haggerty, J. S. and Marra, R. A.J. Am. Ceram. Soc. 65, 324, 330(1982).CrossRefGoogle Scholar
33Rice, G. W. and Woodin, R.L.J. Am. Ceram. Soc. 71, C181(1988).CrossRefGoogle Scholar
34Rice, G. W. and Woodin, R.L. in Applications of Lasers to Industrial Chemistry, Proc. SPIE 458(1984).Google Scholar
35Fiato, R.A.Rice, G.W. and Soled, S.L. U.S. Patents 4659681, 4668647.Google Scholar
36Kappes, M. M.Schar, M.Radi, P. and Schumacher, E.J. Chem. Phys. 84, 1863(1986).CrossRefGoogle Scholar
37Fayet, P. and Woste, L.Z. Phys. D 3, 177(1986).Google Scholar
38Wright, R.B.Bates, J.K. and Gruen, D.M.Inorg. Chem. 17, 2275(1978).CrossRefGoogle Scholar
39Leopold, D.Ho, J. and Lineberger, W. C.J. Chem. Phys. 86, 1715(1987).CrossRefGoogle Scholar
40Mandich, M. L.Bondybey, V. E. and Reents, W. D.J. Chem. Phys. 86, 4245(1987).CrossRefGoogle Scholar
41Benassayag, G.Orloff, J. and Swanson, L.W.Physique, J.Colloq. C7, Suppl. no. 11, 389(1986).Google Scholar
42Bahasadri, A. Ph.D. Thesis Electrical Engineering Dept, Drexel University (1987).Google Scholar
43Takagi, T., Z. Phys. D 3, 272(1986).Google Scholar
44Yamada, I., Palmstron, C. J.Kennedy, E.Mayer, J. W.Inokawa, H. and Takagi, T.Mater. Res. Soc. Symp. Proc. 37, 401(1985).CrossRefGoogle Scholar
45Ina, T.Hanai, M.Ito, H. and Minowa, Y.Proc. 5th Int. Conf. Ion and Plasma Assisted Techniques (CEP Consultanta Ltd., Edinburgh, 1985), p. 16.Google Scholar
46Ina, T. unpublished results.Google Scholar
47Knauer, W.J. Appl. Phys. 62, 841(1987).CrossRefGoogle Scholar
48Andres, R. P. unpublished results.Google Scholar
49Birringer, R.Gleiter, H.Klein, H-P. and Marquardt, P.Phys. Lett. A 102, 365(1984).CrossRefGoogle Scholar
50Zhu, X.Birringer, R.Herr, U. and Gleiter, H.Phys. Rev. B 35, 9085(1987).CrossRefGoogle Scholar
51Haubold, T.Birringer, R.Lengeler, B. and Gleiter, H. unpublished results.Google Scholar
52Herr, U.Jing, J.Birringer, R.Gonser, U. and Gleiter, H.Appl, Phys. Lett. 50, 472(1987).CrossRefGoogle Scholar
53Schaefer, H.E. and Wurschum, R.Phys. Lett. A 119, 370(1987); H. E., Schaefer, R., Wurschum, M., Scheytt, R., Birringer, and H., Gleiter Mater. Sci. Forum 15-18, 955(1987).CrossRefGoogle Scholar
54Miitschele, T. and Kirchheim, R.Scripta Metall. 21, 135, 1101(1987).CrossRefGoogle Scholar
55Rupp, J. and Birringer, R.Phys. Rev. B 36, 7888(1987).CrossRefGoogle Scholar
56Korn, D.Morsch, A.Birringer, R.Arnold, W. and Gleiter, H.Physique, J.Colloq. C5 49, 769(1988).Google Scholar
57Karch, J.Birringer, R. and Gleiter, H.Nature 330, 556(1987).CrossRefGoogle Scholar
58Siegel, R. W.Ramasamy, S.Hahn, H.Li, Z.Lu, T. and Gronsky, R.J. Mater. Res. 3, 1367(1988).CrossRefGoogle Scholar
59Schwarz, R. and Johnson, W.L.Phys. Rev. Lett. 51, 415(1983).CrossRefGoogle Scholar
60Li, Z.Ramasamy, S.Hahn, H. and Siegel, R. W.Mater. Letters 6, 195(1988).CrossRefGoogle Scholar
61Hofler, H-J.Hahn, H. and Averback, R. S. unpublished results.Google Scholar
62Raghavachari, K. and Logovimsky, V.Phys. Rev. Lett. 55, 2853(1985).CrossRefGoogle Scholar
63Raghavachari, K. and Rohlfing, C. M.J. Chem. Phys. 89, 2219(1988).CrossRefGoogle Scholar
64McAdon, M. H. and Goddard, W. A.J. Non-Cryst. Solids 75, 149(1985).CrossRefGoogle Scholar
65McAdon, M.H. and Goddard, W. A.J. Phys. Chem. 91, 2607(1987).CrossRefGoogle Scholar
66Louie, S. G. in Electronic Structure, Dynamics and Quantum Structural Properties of Condensed Matter, edited by Devreese, J. and Camp, P. Van (Plenum Press, New York, 1985), p. 335.CrossRefGoogle Scholar
67Theory of the Inhomogeneous Electron Gas, edited by Lundqvist, S. and March, N. H. (Plenum Press, New York, 1983); several articles in this book are of interest.CrossRefGoogle Scholar
68Car, R. and Parrinello, M.Phys. Rev. Lett. 55, 2471(1985).CrossRefGoogle Scholar
69Ballone, P.Andreoni, W.Car, R. and Parrinello, M.Phys. Rev. Lett. 60, 271(1988).CrossRefGoogle Scholar
70Chadi, D.J.Phys. Rev. Lett. 41, 1062(1978).CrossRefGoogle Scholar
71Tomanek, D. and Schluter, M.Phys. Rev. Lett. 56, 1055(1986).CrossRefGoogle Scholar
72Chelikowsky, L R. and Redwing, R.Solid State Commun. 64, 843(1987).CrossRefGoogle Scholar
73de Heer, W. A., Knight, W. D.Chou, M. Y. and Cohen, M. L. in Solid State Physics, edited by Ehrenreich, H. and Turnbull, D. (Academic Press, New York, 1987), Vol. 40, p. 94.Google Scholar
74Knight, W. D.Clemenger, K.Heer, W. A. de, Saunders, W. A.Chou, M. Y. and Cohen, M.L.Phys. Rev. Lett. 52, 2141(1984).CrossRefGoogle Scholar
75Hybertsen, M. S. and Louie, S.G.Phys. Rev. Lett. 55, 1418(1985).CrossRefGoogle Scholar
76Hybertsen, M. S. and Louie, S. G.Phys. Rev. B 34, 5390(1986).CrossRefGoogle Scholar
77Hybertsen, M.S. and Louie, S.G.Phys. Rev. Lett. 58, 1551(1987).CrossRefGoogle Scholar
78Buffet, Ph. and Borel, J-P.Phys. Rev. A 13, 2287(1976).CrossRefGoogle Scholar
79Gleiter, H. unpublished results.Google Scholar
80Baeri, P.Foti, G.Poate, J. M. and Cullis, A. G.Phys. Rev. Lett. 45, 2036(1980).CrossRefGoogle Scholar
81Olson, G.L.Mater. Res. Soc. Symp. Proc. 35, 24(1984).Google Scholar
82Peercy, P. S. and Thompson, M.O.Mater. Res. Soc. Symp. Proc. 35, 53(1984).CrossRefGoogle Scholar
83Phillips, J. C.J. Chem. Phys. 86, 619(1986).Google Scholar
84Martins, J.L.Battet, J. and Car, R.Phys. Rev. B 31, 1804(1985).CrossRefGoogle Scholar
85Horvath, J.Birringer, R. and Gleiter, H.Solid State Commun. 62, 319(1987).CrossRefGoogle Scholar
86The work of Hilliard and co-workers has most recently been reviewed by Greer, A. L. and Spaepen, F. in Synthetic Modulated Structures, edited by Chang, L.L. and Giessen, B.C. (Academic Press, New York, 1985), p. 419.Google Scholar
87Cammarata, R. C.Scripta Metall. 20, 479(1986).CrossRefGoogle Scholar
88Purdes, A. Ph.D. Thesis Northwestern University (1976).Google Scholar
89Henein, G. Ph.D. Thesis Northwestern University(1979).Google Scholar
90Wu, T.B.J. Appl. Phys. 53, 5265(1982).CrossRefGoogle Scholar
91Jankowski, A. F. and Tsakalakos, T.J. Phys. F: Met. Phys. 15, 1279(1985).CrossRefGoogle Scholar
92Banerjea, A. and Smith, J.R.Phys. Rev. B 35, 5413(1987).CrossRefGoogle Scholar
93Bevk, J.Ann. Rev. Mater. Sci. 13, 319(1983).CrossRefGoogle Scholar
94Koehler, J. S.Phys. Rev. B 2, 547(1970).CrossRefGoogle Scholar
95Helmersson, U.Todorova, S.Barnett, S.A.Sundgren, J-E.Markert, L. C. and Greene, J.E.J. Appl. Phys. 62, 481(1987).CrossRefGoogle Scholar
96Birringer, R.Hahn, H.Hofler, H.Karch, J. and Gleiter, H. in Diffusion Processes in High Technology Materials, edited by Gupta, D.Romig, A. D. Jr. , and Dayananda, M. A. (Trans. Tech. Publ., Aedermannsdorf, 1988), p. 17.Google Scholar
97Brus, L.IEEE J. Quantum Electron QE-22, 1909(1986).CrossRefGoogle Scholar
98Alivisatos, A. P.Harris, A. L.Levinos, N. J.Steigerwald, M. L. and Brus, L.E.J. Chem. Phys. 89, 4001(1988).CrossRefGoogle Scholar
99Brus, L.New. J. of Chem. 11, 123(1987).Google Scholar
100Wang, Y.Suna, A.Mahler, W. and Kasowski, R.J. Chem. Phys. 87, 7315(1987).CrossRefGoogle Scholar
101Dannhauser, T.O'Neil, M., Johansson, K.Whitten, D. and McLendon, G.J. Phys. Chem. 90, 6074(1986).CrossRefGoogle Scholar
102Jain, R. K. and Lind, R. C.J. Opt. Soc. Am. 73, 647(1983).CrossRefGoogle Scholar
103Roussignol, T.Ricard, D. E.Lukasik, J. and Flytzanis, C.J. Opt. Soc. Am. B4, 5(1987).CrossRefGoogle Scholar
104Olbright, G. R.Teyghambarian, N. and Koch, S. W.Opt. Lett. 12, 413(1987).CrossRefGoogle Scholar
105Wang, Y. and Mahler, W.Opt. Comm. 61, 233(1987).CrossRefGoogle Scholar
106Hilinski, E.S.Lucas, P. A. and Wang, Y.J. Chem. Phys. 89, 3435(1988).CrossRefGoogle Scholar
107Takagahara, T. and Hanamura, E.Phys. Rev. Lett. 56, 2533(1986).CrossRefGoogle Scholar
108Chemla, D. S. and Miller, D. A. B.Opt. Lett. 11, 522(1986).CrossRefGoogle Scholar
109Banyai, L. and Koch, S. W.Phys. Rev. Lett. 57, 2722(1986).CrossRefGoogle Scholar
110Fornasiero, D. and Grieser, F.J. Chem. Phys. 87, 3213(1987).CrossRefGoogle Scholar
l11Callmar, J. P. and Hegeders, L.S.Principles and Applications of Organotransition Metal Chemistry (University Science Books, Mill Valley, CA, 1980).Google Scholar
112Kaldor, A.Cox, D. M. and Zakin, M. R. in Molecular Surface Chemistry: Reactions of Gas-Phase Metal Clusters, Advances in Chemical Physics, edited by Prigogine, I. (Wiley & Sons, New York, 1988), Vol. 70, part 2, p. 211.Google Scholar
113Gates, B.C.Guczi, L. and Knozingen, H.Metal Clusters in Catalysis (Elsevier, New York, 1986).Google Scholar
114Anderson, J. R. and Bondard, M.Catalysis: Science and Technology (Springer-Verlag, Heidelberg, 1984).Google Scholar
115Zakin, M.R.Brickman, R. O.Cox, D.M. and Kaldor, A.J. Chem. Phys. 88, 6605(1988).CrossRefGoogle Scholar
116Alford, J.M.Weiss, F. D.Laaksonen, R. T. and Smalley, R.E.J. Phys. Chem. 90, 4480(1986).CrossRefGoogle Scholar
117Elkind, J.L.Weiss, F.D.Alford, J.M.Laaksonen, R.T. and Smalley, R.E.J. Chem. Phys. 88, 5215(1988).CrossRefGoogle Scholar
118Pierre, R. J. St. and El-Sayed, M. A., J. Phys. Chem. 91, 763(1987).CrossRefGoogle Scholar
119Richtsmeier, S.C.Parks, E.K.Liu, K.Pobo, L. G. and Riley, S.J.J. Chem. Phys. 82, 3659(1985).CrossRefGoogle Scholar
120Hamrick, Y.Taylor, S.Lemire, G. W.Fu, Z-W.Shui, J-C. and Morse, M.D.J. Chem. Phys. 88, 4095(1988).CrossRefGoogle Scholar
121Parks, E.K.Nieman, G.Pobo, L. G. and Riley, S.J.J. Chem. Phys. 88, 6260(1988).CrossRefGoogle Scholar
122Parks, E.K.Liu, K.Richtsmeier, S.C.Pobo, L. G. and Riley, S.J.J. Chem. Phys. 82, 5470(1985).CrossRefGoogle Scholar
123Liu, K.Parks, E.K.Richtsmeier, S.C.Pobo, L.G. and Riley, S.J.J. Chem. Phys. 83, 2882; erratum 83, 5353(1985).CrossRefGoogle Scholar
124Parks, E. K.Nieman, G. C.Pobo, L. G. and Riley, S. J.J. Chem. Phys. 86, 1066(1987).CrossRefGoogle Scholar
125Parks, E.K.Miranda, R.Nieman, G.C. and Riley, S.J. unpublished results.Google Scholar
126Parks, E.K.Weiller, B.H.Bechthold, P. S.Hoffman, W.F.Nieman, G.C.Pobo, L.G. and Riley, S.J.J. Chem. Phys. 88, 1622(1988).CrossRefGoogle Scholar
127Faibis, A.Kanter, E. P.Tack, L. M.Bakke, E. and Zabransky, B.J. Phys. Chem. 91, 6445(1987).CrossRefGoogle Scholar
128Vager, Z.Kanter, E. P.Both, G.Cooney, P. J.Fabis, A.Koenig, W.Zabransky, B. and Zajfman, D.Phys. Rev. Lett. 57, 2793(1986).CrossRefGoogle Scholar
129Wallenberg, L. R.Bovin, J. O.Petford-Long, A. K., and Smith, D. J.Ultramicroscopy 20, 71(1986).CrossRefGoogle Scholar
130Marks, L.D. and Smith, D. J.J. Microscopy 130, 249(1982).CrossRefGoogle Scholar
131Ogawa, S.Tanishiro, Y.Takayanagi, K. and Yagi, K.J. Vac. Sci. Technol. A5, 1735(1987).CrossRefGoogle Scholar
132Ultramicroscopy 20, No. 1/2(1986).Google Scholar
133Prestridge, E.B. and Yates, D.J.C.Nature 234, 345(1971); E.B., Prestridge, G.H., Via and J.H., Sinfelt J. Catal. 50, 115(1977).CrossRefGoogle Scholar
134Baker, R. T. K. and Harris, P. S.J. Sci. Instrum. 5, 793 (1970); R. T. K., Baker, E. B., Prestridge and G. B., McVicker J. Catal. 89, 422(1984).CrossRefGoogle Scholar
135Abraham, D.W.Sattler, K.Ganz, E.Mamin, H.J.Thomsen, R.E. and Clarke, J.Appl. Phys. Lett. 49, 853(1986).CrossRefGoogle Scholar
136Baro, A. M.Bartolome, A.Vazquez, L.Garcia, N.Reifenberger, R.Choi, E. and Andres, R.P.Appl. Phys. Lett. 51, 1594(1987).CrossRefGoogle Scholar
137Castro, T.Li, Y. Z.Choi, E.Andres, R. P. and Reifenberger, R. in Proc. 35th National Symposium of the American Vacuum Society (Atlanta, GA; October 1988) (to be published).Google Scholar
138Yokozeki, A. and Stein, G. D.J. Appl. Phys. 49, 2224(1978).CrossRefGoogle Scholar
139Farges, J.deFeraudy, M.F.Raoult, B. and Torchet, G.J. Chem. Phys. 78, 5067(1983); J., Farges, M.F., deFeraudy, B., Raoult and G., Torchet in Large Finite Systems, edited by J., Jortner, A., Pulman and B. Pulman (Reidel, Dordrecht, 1987), p. 113.CrossRefGoogle Scholar
140Schaeffer, D.W.Mater. Res. Soc. Symp. Proc. 79, 47(1987).CrossRefGoogle Scholar
141Martin, J.E. and Hurd, A. J.J. Appl. Cryst. 20, 61(1987).CrossRefGoogle Scholar
142Stein, R. S.Mater. Res. Soc. Symp. Proc. 79, 3(1987).CrossRefGoogle Scholar
143Weltner, W. Jr. and Zee, R.J. Van, Ann. Rev. Phys. Chem. 35, 291(1984).CrossRefGoogle Scholar
144Kernisant, K.Thompson, G. A. and Lindsay, D. M.J. Chem. Phys. 82, 4739(1985).CrossRefGoogle Scholar
145Howard, J. A.Preston, K. F.Sutcliffe, R. and Mile, B.J. Phys. Chem. 87, 536(1983).CrossRefGoogle Scholar
146Zee, R.J. Van, Ferrante, R.F.Zeringue, K. J.Weltner, W. Jr. , and Ewing, D.W.J. Chem. Phys. 88, 3465(1983).Google Scholar
147Knight, L. B. Jr. , Woodward, R. W.Zee, R. J. Van, and Weltner, W. Jr. , J. Chem. Phys. 79, 5820(1983).CrossRefGoogle Scholar
148Montano, P.A.Schulze, W.Tesche, B.Shenoy, G.K. and Morrison, T.T.Phys. Rev. B 30, 672(1984).CrossRefGoogle Scholar
149Metal Clusters, edited by Moskovits, M. (Wiley & Sons, New York, 1987), p. 185.Google Scholar
150Morse, M.D.Hopkins, J.B.Langridge-Smith, P.R.R., and Smalley, R.E.J. Chem. Phys. 79, 5316(1983).CrossRefGoogle Scholar