Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-05T04:25:04.207Z Has data issue: false hasContentIssue false

Residual stresses in polycrystalline Cu/Cr multilayered thin films

Published online by Cambridge University Press:  31 January 2011

A. Misra
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
H. Kung
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
T. E. Mitchell
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
M. Nastasi
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Get access

Abstract

Residual stresses in sputter-deposited Cu/Cr multilayers and Cu and Cr single-layered polycrystalline thin films were evaluated by the substrate curvature method. The stresses in the multilayers were found to be tensile and to increase in magnitude with increasing layer thickness (h) to a peak value of ∼1 GPa for h = 50 nm. For h > 50 nm, the residual stress decreased with increasing h but remained tensile. The same trends were observed in single-layered Cu and Cr thin films, except that the maximum stress in Cu films is 1 order of magnitude lower than that in Cr. Transmission electron microscopy was used to study the microstructural evolution as a function of layer thickness. The evolution of tensile growth stresses in Cr films is explained by island coalescence and subsequent growth with increasing thickness. Estimates of the Cr film yield strength indicated that, for h ≥ 50 nm, the residual stress may be limited by the yield strength. Substrate curvature measurements on bilayer films of different thicknesses were used to demonstrate that a non-negligible contribution to the total stress in the multilayers arises from the interface stress.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Windischmann, H., Crit. Rev. Solid State Mater. Sci. 17, 547 (1992).CrossRefGoogle Scholar
2.Doerner, M.F. and Nix, W.D., Crit. Rev. Solid State Mater. Sci. 14, 25 (1988).CrossRefGoogle Scholar
3.Thornton, J.A. and Hoffman, D.W., Thin Solid Films 171, 5 (1989).CrossRefGoogle Scholar
4.Was, G.S. and Foecke, T., Thin Solid Films 286, 1 (1996).CrossRefGoogle Scholar
5.Anderson, P.M. and Li, C., Nanostruct. Mater. 5, 349 (1995).CrossRefGoogle Scholar
6.Barnett, S.A. and Shinn, M., Ann. Rev. Mater. Sci. 24, 481 (1994).CrossRefGoogle Scholar
7.Clemens, B.M., Kung, H., and Barnett, S.A., MRS Bull. 24(2), 20 (1999).CrossRefGoogle Scholar
8.Ruud, J.A., Jervis, T.R., and Spaepen, F., J. Appl. Phys. 75, 4969 (1994).CrossRefGoogle Scholar
9.Cammarata, R.C., Bilello, J.C., Lindsay Greer, A., Sieradzki, K., and Yalisove, S.M., MRS Bull. 24(2), 34 (1999).CrossRefGoogle Scholar
10.Cammarata, R.C., Mater. Sci. Eng. A 237, 180 (1997).CrossRefGoogle Scholar
11.Ruud, J.A., Witvrouw, W., and Spaepen, F., J. Appl. Phys. 74, 2517 (1993).CrossRefGoogle Scholar
12.Bain, J.A., Chyung, L.Y., Brennan, S., and Clemens, B.M., Phys. Rev. B 44, 1184 (1991).CrossRefGoogle Scholar
13.Shull, A.L. and Spaepen, F., J. Appl. Phys. 80, 6243 (1996).CrossRefGoogle Scholar
14.Gumbsch, P. and Daw, M.S., Phys. Rev. B 44, 3934 (1991).CrossRefGoogle Scholar
15.Misra, A., Verdier, M., Lu, Y.C., Kung, H., Mitchell, T.E., Nastasi, M., and Embury, J.D., Scr. Mater. 39, 555 (1998).CrossRefGoogle Scholar
16.Volkert, C.A., J. Appl. Phys. 70, 3521 (1991).CrossRefGoogle Scholar
17.Stoney, G.G., Proc. R. Soc. (London) A 82, 172 (1909).Google Scholar
18.Tambwe, M.F., Stone, D.S., Nastasi, M., Griffin, A.J., Kung, H., and Lu, Y.C., J. Mater. Res. 14, 409 (1999).CrossRefGoogle Scholar
19.Knorr, D.B. and Tracy, D.P., Mater. Chem. Phys. 41, 206 (1995).CrossRefGoogle Scholar
20.Thompson, C.V. and Carel, R., J. Mech. Phys. Solids 44, 657 (1996).CrossRefGoogle Scholar
21.Misra, A., Fayeulle, S., Kung, H., Mitchell, T.E., and Nastasi, M., Appl. Phys. Lett. 73, 891 (1998).CrossRefGoogle Scholar
22.Muller, K.H., J. Appl. Phys. 62, 1796 (1987).CrossRefGoogle Scholar
23.Zhou, X.W., Johnson, R.A., and Wadley, H.N.G, Acta. Mater. 45, 1513 (1997).CrossRefGoogle Scholar
24.Nix, W.D. and Clemens, B.M., J. Mater. Res. 14, 3467 (1999).CrossRefGoogle Scholar
25.Misra, A., Kung, H., Mitchell, T.E., Jervis, T., and Nastasi, M., in Thin Films-Stresses and Mechanical Properties VII, edited by Cammarata, R.C., Nastasi, M.A., Busso, E.P., and Oliver, W.C. (Mater. Res. Soc. Symp. Proc. 505, Warrendale, PA, 1998), p. 583.Google Scholar
26.Jones, H., Met. Sci. J. 5, 15 (1971).CrossRefGoogle Scholar
27.Porter, D.A. and Easterling, K.E., Phase Transformations in Metals and Alloys, 2nd ed. (Chapman and Hall, London, United Kingdom, 1992), p. 122.CrossRefGoogle Scholar
28.Janda, M. and Stefan, O., Thin Solid Films 112, 127 (1984).CrossRefGoogle Scholar
29.Martinz, H.P. and Abermann, R., Thin Solid Films 89, 133 (1982).CrossRefGoogle Scholar
30.Misra, A., Hundley, M.F., Hristova, D., Kung, H., Mitchell, T.E., Nastasi, M., and Embury, J.D., J. Appl. Phys. 85, 302 (1999).CrossRefGoogle Scholar
31.Venkatraman, R. and Bravman, J.C., J. Mater. Res. 7, 2040 (1992).CrossRefGoogle Scholar
32.Thompson, C.V., J. Mater. Res. 8, 237 (1993).CrossRefGoogle Scholar
33.Ashby, M.F., Acta Metall. 14, 679 (1966).CrossRefGoogle Scholar
34.Nix, W.D., Scr. Mater. 39, 545 (1998).CrossRefGoogle Scholar
35.Freitag, J.M. and Clemens, B.M., Appl. Phys. Lett. 73(1), 43 (1998).CrossRefGoogle Scholar