Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-14T19:16:19.980Z Has data issue: false hasContentIssue false

The role of alternating current electric field for cell adhesion on 2D and 3D biomimetic scaffolds based on polymer materials and adhesive proteins

Published online by Cambridge University Press:  09 August 2013

V. Pehlivanova
Affiliation:
Department “Electroinduced and adhesive properties”, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
V. Krasteva
Affiliation:
Department “Electroinduced and adhesive properties”, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
B. Seifert
Affiliation:
Institute of Biomaterial Science, Helmholtz-Zentrum Geesthacht, Teltow 14513, Germany
K. Lützow
Affiliation:
Institute of Biomaterial Science, Helmholtz-Zentrum Geesthacht, Teltow 14513, Germany
I. Tsoneva
Affiliation:
Department “Electroinduced and adhesive properties”, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
T. Becker
Affiliation:
Institute of Biomaterial Science, Helmholtz-Zentrum Geesthacht, Teltow 14513, Germany
K. Richau
Affiliation:
Institute of Biomaterial Science, Helmholtz-Zentrum Geesthacht, Teltow 14513, Germany
A. Lendlein
Affiliation:
Institute of Biomaterial Science, Helmholtz-Zentrum Geesthacht, Teltow 14513, Germany
R. Tzoneva*
Affiliation:
Department “Electroinduced and adhesive properties”, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
*
a)Address all correspondence to this author. e-mail: tzoneva@bio21.bas.bg
Get access

Abstract

Tissue engineering principles suggest the formation of 3D scaffolds based on polymer fibers and adhesive proteins. These scaffolds aim to mimic the native extracellular matrix and thus providing a favorable environment for cell attachment and proliferation. The application of an electric field (EF) can influence the quantity and the spatial orientation/conformation of adsorbed proteins, which could lead to changes in their functions. We study the influence of alternating current (AC) EF on the adsorption of fibronectin onto poly(etherimide) (PEI) electrospun fiber materials in 3D structures and subsequent cell adhesion. The results are compared with 2D PEI material and glass surface. 3D scaffolds adsorbed a lower amount of fibronectin than 2D film or glass. Application of AC EF with a frequency of 1 Hz decreased the adsorption of fibronectin. Cell adhesion on 3D materials was reduced compared with 2D film and glass. The application of EF with frequencies between 1 and 10 Hz improved cell adhesion on both 2D and 3D materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Shastri, V.P. and Lendlein, A.: Materials in regenerative medicine. Adv. Mater. 21(32–33), 3231 (2009).CrossRefGoogle ScholarPubMed
Jung, F., Wischke, C., and Lendlein, A.: Degradable, multifunctional cardiovascular implants: Challenges and hurdles. MRS Bull. 35(8), 607 (2010).CrossRefGoogle Scholar
Shastri, V.P. and Lendlein, A.: Engineering materials for regenerative medicine. MRS Bull. 35(8), 571 (2010).CrossRefGoogle Scholar
Ma, P.X. and Langer, R.: Fabrication of biodegradable polymer foams for cell transplantation and tissue engineering. Methods Mol. Med. 18, 47 (1999).Google ScholarPubMed
Sundararaghavan, H.G. and Burdick, J.A.: Gradients with depth in electrospun fibrous scaffolds for directed cell behavior. Biomacromolecules 12(6), 2344 (2011).CrossRefGoogle ScholarPubMed
Kawakami, H., Mori, Y., Takagi, J., Nagaoka, S., Kanamori, T., Shinbo, T., and Kubota, S.: Development of a novel polyimide hollow fiber for an intravascular oxygenator. ASAIO J. 43, M490 (1997).CrossRefGoogle ScholarPubMed
Stieglitz, T. and Meyer, J.U.: Implantable microsystems. Polyimidebased neuroprotheses for interfacing nerves. Med. Devices Technol. 10(6), 28 (1999).Google Scholar
Lützow, K., Albrecht, W., Weigel, T., Seifert, B., Groth, T., and Lendlein, A.: Development of novel polyetherimide particles for the adsorption of proteins from plasma. Int. J. Artif. Organs 28(5), 537 (2005).Google Scholar
Albrecht, W., Santoso, F., Lutzow, K., Weigel, T., Schomacker, R., and Lendlein, A.: Preparation of aminated microfiltration membranes by degradable functionalization using plain PEI membranes with various morphologies. J. Membr. Sci. 292(1–2), 145 (2007).CrossRefGoogle Scholar
Seifert, B., Mihanetzis, G., Groth, T., Albrecht, W., Richau, K., Missirlis, Y., Paul, D., and von Sengbusch, G.: Polyetherimide: A new membrane-forming polymer for biomedical applications. Artif. Organs 26(2), 189 (2002).CrossRefGoogle ScholarPubMed
Lange, M., Luetzow, K., Neffe, A.T., and Lendlein, A.: Synthesis and characterization of Polyetherimides with 3-methoxy-1,2-propanediol moieties. Macromol. Symp. 309310, 40 (2011).CrossRefGoogle Scholar
Hiebl, B., Lutzow, K., Lange, M., Jung, F., Seifert, B., Klein, F., Weigel, T., Kratz, K., and Lendlein, A.: Cytocompatibility testing of cell culture modules fabricated from specific candidate biomaterials using injection molding. J. Biotechnol. 148(1), 76 (2010).CrossRefGoogle ScholarPubMed
Rueder, C., Sauter, T., Becker, T., Kratz, K., Hiebl, B., Jung, F., Lendlein, A., and Zohlnhoefer, D.: Viability, proliferation and adhesion of smooth muscle cells and human umbilical vein endothelial cells on electrospun polymer scaffolds. Clin. Hemorheol. Microcirc. 50(1–2), 101 (2012).CrossRefGoogle Scholar
Schneider, T., Kohl, B., Sauter, T., Becker, T., Kratz, K., Schossig, M., Jung, F., Lendlein, A., Ertel, W., and Schulze-Tanzil, G.: Interaction of chondrocytes with electrospun polymer scaffolds depending on the fiber orientation. Int. J. Artif. Organs 34(8), 688 (2011).Google Scholar
Braune, S., Lange, M., Richau, K., Luetzow, K., Weigel, T., Jung, F., and Lendlein, A.: Interaction of thrombocytes with poly(ether imide): The influence of processing. Clin. Hemorheol. Microcirc. 46(2–3), 239 (2010).CrossRefGoogle ScholarPubMed
Tzoneva, R., Seifert, B., Albrecht, W., Richau, K., Lendlein, A., and Groth, T.: Poly(ether imide) membranes: Studies on the effect of surface modification and protein pre-adsorption on endothelial cell adhesion, growth and function. J. Biomater. Sci., Polym. Ed. 19(7), 837 (2008).CrossRefGoogle ScholarPubMed
Tzoneva, R., Seifert, B., Albrecht, W., Richau, K., Groth, T., and Lendlein, A.: Hemocompatibility of poly(ether imide) membranes functionalized with carboxylic groups. J. Mater. Sci. - Mater. Med. 19(10), 3203 (2008).CrossRefGoogle ScholarPubMed
Reneker, D.H. and Chun, I.: Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 7(3), 216 (1996).CrossRefGoogle Scholar
Zhu, Y., Chian, K.S., Chan-Park, M.B., Mhaisalkar, P.S., and Ratner, B.D.: Protein bonding on biodegradable poly(L-lactide-co-caprolactone) membrane for esophageal tissue engineering. Biomaterials 27(1), 68 (2006).CrossRefGoogle ScholarPubMed
Taguchi, T., Kishida, A., Akashi, M., and Maruyama, I.: Immobilization of human vascular endothelial growth factor (VEGF165) onto biomaterials: An evaluation of the biological activity of immobilized VEGF165. J. Bioact. Compat. Polym. 15(4), 309 (2000).CrossRefGoogle Scholar
Dubiel, E.A., Martin, Y., and Vermette, P.: Bridging the gap between physicochemistry and interpretation prevalent in cell-surface interactions. Chem. Rev. 111(4), 2900 (2011).CrossRefGoogle Scholar
Cukierman, E., Pankov, R., Stevens, D.R., and Yamada, K.M.: Taking cell-matrix adhesions to the third dimension. Science 294(5547), 1708 (2001).CrossRefGoogle Scholar
Grinnell, F.: Fibroblast biology in three-dimensional collagen matrices. Trends Cell Biol. 13(5), 264 (2003).CrossRefGoogle ScholarPubMed
Georges, P.C. and Janmey, P.A.: Cell type-specific response to growth on soft materials. J. Appl. Physiol. 98(4), 1547 (2005).CrossRefGoogle ScholarPubMed
Morrow, R., McKenzie, D.R., Bilek, M.M.M., MacDonald, C.L., Stindt, M., Anetsberger, G., and Martin, A.S.: Electric field effects on adsorption/desorption of proteins and colloidal particles on a gold film observed using surface plasmon resonance. Physica B 394(2), 203 (2007).CrossRefGoogle Scholar
Song, Y.Y., Li, Y., Yang, C., and Xia, X.H.: Surface electric field manipulation of the adsorption kinetics and biocatalytic properties of cytochrome c on a 3D macroporous Au electrode. Anal. Bioanal. Chem. 390(1), 333 (2008).CrossRefGoogle ScholarPubMed
Cho, M.R., Thatte, H.S., Lee, R.C., and Golan, D.E.: Induced redistribution of cell-surface receptors by alternating-current electric-fields. FASEB J. 8(10), 771 (1994).CrossRefGoogle ScholarPubMed
Cho, M.R., Thatte, H.S., Lee, R.C., and Golan, D.E.: Reorganization of microfilament structure induced by ac electric fields. FASEB J. 10(13), 1552 (1996).CrossRefGoogle ScholarPubMed
Stossel, T.P.: On the crawling of animal cells. Science 260, 1086 (1993).CrossRefGoogle ScholarPubMed
Krasteva, V., Pehlivanova, V., Seifert, B., Luetzow, K., Tsoneva, I., Richau, K., Lendlein, A., and Tzoneva, R.: Influence of AC electric fields on the adsorption of plasma proteins onto nanofiber biomaterials. Compt. rend. Acad. bulg. Sci. 64(4), 535 (2011).Google Scholar
Quantifying Western Blots Without Expensive Commercial Quantification Software: http://www.lukemiller.org/journal/2007/08/quantifying-western-blots-without.html , Internet (2011).Google Scholar
Soliman, S., Sant, S., Nichol, J.W., Khabiry, M., Traversa, E., and Khademhosseini, A.: Controlling the porosity of fibrous scaffolds by modulating the fiber diameter and packing density. J. Biomed. Mater. Res. Part A 96(3), 566 (2011).CrossRefGoogle ScholarPubMed
Balguid, A., Mol, A., van Marion, M.H., Bank, R.A., Bouten, C.V., and Baaijens, F.P.: Tailoring fiber diameter in electrospun poly(epsilon-caprolactone) scaffolds for optimal cellular infiltration in cardiovascular tissue engineering. Tissue Eng. Part A 15(2), 437 (2009).CrossRefGoogle ScholarPubMed
Sell, S., Barnes, C., Simpson, D., and Bowlin, G.: Scaffold permeability as a means to determine fiber diameter and pore size of electrospun fibrinogen. J. Biomed. Mater. Res. Part A 85(1), 115 (2008).CrossRefGoogle ScholarPubMed
Kim, G. and Kim, W.: Highly porous 3D nanofiber scaffold using an electrospinning technique. J. Biomed. Mater. Res. Part B 81(1), 104 (2007).CrossRefGoogle ScholarPubMed
Cho, M.R., Thatte, H.S., Lee, R.C., and Golan, D.E.: Integrin-dependent human macrophage migration induced by oscillatory electrical stimulation. Ann. Biomed. Eng. 28(3), 234, (2000).CrossRefGoogle ScholarPubMed
Bretscher, A.: Microfilaments and membranes. Curr. Opin. Cell Biol. 5, 653 (1993).CrossRefGoogle ScholarPubMed