Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-13T01:47:13.229Z Has data issue: false hasContentIssue false

Room temperature perovskite production from bimetallic alkoxides by ketone assisted oxo supplementation (KAOS)

Published online by Cambridge University Press:  31 January 2011

B.C. Gaskins
Affiliation:
The Ohio State University, 477 Watts Hall, 2041 College Road, Columbus, Ohio 43210
J.J. Lannutti
Affiliation:
The Ohio State University, 477 Watts Hall, 2041 College Road, Columbus, Ohio 43210
Get access

Abstract

Barium titanate has been prepared at room temperature from a well-characterized crystalline barium titanium oxo alkoxide by reaction with acetone. An aldol condensation apparently supplies oxygen to condensing oxo alkoxide clusters. Transmission electron microscopy confirms that the crystallites so formed are dense and perfect with an average size of approximately 85 Å. Characterization of reactants and products provides a tentative understanding of structural evolution and the intermediates of the transformation. Crystalline SrTiO3 and BaZrO3 were also formed at room temperature by this same method.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Phule, P. P. and Risbud, S. H., J. Mater. Sci. 25, 1169 (1990).CrossRefGoogle Scholar
2.Lee, G. R. and Crayston, J.A., Adv. Mater. 5, 434 (1993).CrossRefGoogle Scholar
3.Aoki, K., Fukuda, Y., and Nishimura, A., Jpn. J. Appl. Phys. 32, 4147 (1993).CrossRefGoogle Scholar
4.Mazdiyasni, K., Dolloff, R., and Smith, J., J. Am. Ceram. Soc. 52, 523 (1969).CrossRefGoogle Scholar
5.Vaartstra, B., Huffman, J., Streib, W., and Caulton, K., J. Chem. Soc. Chem. Commun., 1750 (1990).CrossRefGoogle Scholar
6.Riman, R., Ph.D. Thesis, MIT (1987).Google Scholar
7.Kirby, K. W., Mater. Res. Bull. 23, 881 (1988).CrossRefGoogle Scholar
8.Kirby, K. W., personal communication (1993).Google Scholar
9.Yanovsky, A.Yanovskaya, M., Limar, V., Kessler, V., Turova, N., and Struchkov, Y., J. Chem. Soc. Chem. Commun. 22, 1605 (1991).CrossRefGoogle Scholar
10.Gaskins, B., Lannutti, J., Finnen, D., and Pinkerton, A., Acta Crystallogr. C50, 1387 (1994).Google Scholar
11.Turevskaya, E., Yanovskaya, M., Lymar, V., and Turova, N., Russ. J. Inorg. Chem. 38, 563 (1993).Google Scholar
12.Suyama, Y. and Nagasawa, M., J. Am. Ceram. Soc. 77, 603 (1994).CrossRefGoogle Scholar
13.Rehspringer, J., Poix, P., and Bernier, J., J. Noncryst. Solids 82, 286 (1986).CrossRefGoogle Scholar
14.Frey, M. and Payne, D., Chem. Mater. 7, 123 (1995).CrossRefGoogle Scholar
15.Goel, S., Chiang, M., Gibbons, P., and Buhro, W., in Better Ceramics Through Chemistry V, edited by Hampden-Smith, M. J., Klemperer, W. G., and Brinker, C. J. (Mater. Res. Soc. Symp. Proc. 271, Pittsburgh, PA, 1992).Google Scholar
16.Fukui, T., Sakurai, C., and Okuyama, M., J. Mater. Res. 7, 791 (1992).CrossRefGoogle Scholar
17.Power, M., Apblett, A., Bott, S., Atwood, J., and Barron, A., Organometallics 9, 2529 (1990).CrossRefGoogle Scholar
18.Wells, A. F., Structural Inorganic Chemistry, 5th ed. (Clarendon Press, Oxford, U.K., 1984).Google Scholar
19.Ionisation Constants of Organic Acids in Aqueous Solution, edited by Serjeant, E. P. and Dempsey, B. (Pergamon Press, Oxford, U.K., 1979).Google Scholar
20.Kuhlman, K., Vaartstra, B., Streib, W., Huffman, J., and Caulton, K., Inorg. Chem. 32, 1272 (1993).CrossRefGoogle Scholar
21.Goel, S., Chiang, M., and Buhro, W., J. Am. Chem. Soc. 113, 7069 (1991).CrossRefGoogle Scholar
22.Leaustic, A., Babonneau, F., and Livage, J., Chem. Mater. 1, 240 (1989).CrossRefGoogle Scholar