Published online by Cambridge University Press: 31 January 2011
Magnetic and x-ray diffraction measurements on the system (Ti50Al50)100−xMx (M = V, Cr) are used to determine, respectively, the magnetic moment (associated with the dopants M) and changes in the lattice parameters. In addition, site selectivity by the dopants between the Ti and Al sites in the L10 structure is determined by measuring the changes with x (x = 0.12, 0.33, 0.71, and 1.21 at. % for V and x = 0.17, 0.41, 0.88, 1.14, and 1.91 at. % for Cr) the intensities of the (001) and (110) superlattice peaks. These results are compared with our earlier studies of the Mn-doped system that showed that the Mn substitutes for Ti and carries a moment of 2.3 μB/Mn atom. For V and Cr dopings, μ/atom decreases as x increases, the largest values being 1.01 μB/V and 0.55 μB/Cr at the lowest dopings. At the lowest x, V and Cr occupy the Ti sites, but for higher dopings, Ti and Al sites are occupied with about equal probability and μ approaches constant magnitudes of about 0.3 μB. These results suggest that only Ti occupancy results in a localized moment on the dopant. For Mn and V dopings, the magnitudes of the moments are in good agreement with a recent calculation of Khowash et al.