Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-30T19:57:16.076Z Has data issue: false hasContentIssue false

Solid phase equilibria in the Au-Ga-As, Au-Ga-Sb, Au-In-As, and Au-In-Sb ternaries

Published online by Cambridge University Press:  31 January 2011

Tsai C. Thomas
Affiliation:
Department of Chemistry and Biochemistry and Solid State Science Center, University of California, Los Angeles, California 90024
R. Stanley Williams
Affiliation:
Department of Chemistry and Biochemistry and Solid State Science Center, University of California, Los Angeles, California 90024
Get access

Abstract

The Au-Ga-As, Au-Ga-Sb, Au-In-As, and Au-In-Sb ternaries were surveyed using x-ray powder diffraction to determine which metallic phases exist at equilibrium with the III-V compound semiconductors. In closed, small-volume systems (i.e., formation of gas-phase products was prevented), Au does not react with GaAs but does react with the other III-V's investigated to produce Au-group III intermetallic compounds and another solid phase containing the group V element. However, each semiconductor formed pseudobinary systems with at least two different intermetallic compounds. The bulk phase diagrams determined in this study provide frameworks within which much of the experimental data in the literature concerning the products of reactions at Au/III-V interfaces can be understood.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Magee, T. J. and Peng, J., Phys. Status Solidi A 32, 695 (1975).CrossRefGoogle Scholar
2Kim, H. B., Loves, A. F., Sweeny, G. G. and Heng, T. M. S., Inst. Phys. Conf. Ser. No. 33b, 145 (1977).Google Scholar
3Williams, R. H., Varma, R. R., and Mckinley, A., J. Phys. C 10, 4545 (1977).Google Scholar
4Tuck, B., Ip, K. T., and Eastman, L. F., Thin Solid Films 55, 41 (1978).CrossRefGoogle Scholar
5Morgan, D. V., Howes, M. J., and Devlin, W. J., J. Phys. D 11, 1341 (1978).CrossRefGoogle Scholar
6Szydlo, N. and Oliver, J., J. Appl. Phys. 50, 1445 (1979).CrossRefGoogle Scholar
7Barnes, P. A. and Williams, R. S., Solid-State Electron. 24, 907 (1981).CrossRefGoogle Scholar
8Sinha, A. K. and Poate, J. M., Thin Films: Interdiffusion and Reactions, edited by Poate, J. M., Tu, K. M., and Mayer, J. W. (Wiley, New York, 1978), pp. 407432.Google Scholar
9Kinsbron, E., Gallagher, P. K., and English, A. T., Solid-State Electron. 22, 517 (1979).CrossRefGoogle Scholar
10Kumar, K., Jpn. J. Appl. Phys. 18, 713 (1979).Google Scholar
11Vandenberg, J. M. and Einsbron, E., Thin Solid Films 65, 259 (1980).CrossRefGoogle Scholar
12Miller, D. C., J. Electrochem. Soc. 127, 467 (1980).Google Scholar
13Leung, S., Milines, A. G., and Chung, D. D. L., Thin Solid Films 104, 109 (1983).Google Scholar
14Leung, S., Yoshiie, T., Bauer, C. L., and Milines, A. G., J. Electro-chem. Soc. 130, 462 (1983).CrossRefGoogle Scholar
15Yoshiie, T. and Bauer, C. L., J. Vac. Sci. Technol. A 1(2), XXX (1983).CrossRefGoogle Scholar
16Yoshiie, T., Bauer, C. L., and Milines, A. G., Thin Solid Films 111, 149 (1984).CrossRefGoogle Scholar
17Zeng, X. and Chung, D. D. L., Solid-State Electron. 27, 339 (1984).CrossRefGoogle Scholar
18Chye, P. W., Lindau, I., Pianetta, P., Garner, C. M., Su, C. Y., and Spicer, W. E., Phys. Rev. B 18, 5545 (1978).CrossRefGoogle Scholar
19Lindau, I, Chye, P. W., Garner, C. M., Pianetta, P., Su, C. Y., and Spicer, W. E., J. Vac. Sci. Technol. 15, 132 (1978).Google Scholar
20Allred, A. L., J. Inorg. Nucl. Chem. 17, 215 (1961).Google Scholar
21Schwartz, G. P., Gaultieri, G. J., Griffiths, J. E., Thurmond, C. D., and Schwartz, B., J. Electrochem. Soc. 127, 2488 (1980).Google Scholar
22Thurmond, C. D., Schwartz, G. P., Kammlott, G. W., and Schwartz, B., J. Electrochem. Soc. 127, 1366 (1980).CrossRefGoogle Scholar
23Schwartz, G. P., Thin Solid Films 103, 3 (1983).CrossRefGoogle Scholar
24Panish, M. B., J. Electrochem. Soc. 114, 517 (1967).Google Scholar
25Lupis, C. H. P., Chemical Thermodynamics of Materials (North-Holland, New York, 1983).Google Scholar
26Williams, R. S. (to be published).Google Scholar
27JCPDS, Powder Diffraction File: Inorganic Phase (1984), International Center for Diffraction Data.Google Scholar
28Nikitina, V. K. and Lobanova, Y. K., Izv. Akad. Nauk SSSR, Neorg. Mater. 10, 1596 (1974).Google Scholar
29Kubiak, R. and Schubert, K., Z. Metallkd. 71, 635 (1980).Google Scholar
30Babitsyna, A. A. and Luzhnaya, N. P., Zh. Neorg. Khim. 17, 1741 (1974).Google Scholar
31Cooke, C. J. and Hume-Rothery, W., J. Less-Common Met. 10, 42 (1966).Google Scholar
32Puselj, M. and Schubert, K., J. Less-Common Met. 38, 83 (1974).Google Scholar
33Hiscocks, S. E. R. and Hume-Rothery, W., Proc. R. Soc. (London), Ser. A 282, 318 (1964).Google Scholar
34Hansen, M., Constitution of Binary Alloys (McGraw-Hill, New York, 1958).CrossRefGoogle Scholar
35Elliot, R. P., Constitution of Binary Alloys, First Supplement (McGraw-Hill, New York, 1965).Google Scholar
36Shunk, F. A., Constitution of Binary Alloys, Second Supplement (McGraw-Hill, New York, 1969).Google Scholar
37Moffatt, W. G., Binary Phase Diagrams Handbook (General Electric Co., Schenectady, 1977).Google Scholar
38Pugh, J. H. and Williams, R. S., J. Mater. Res. 1, 343 (1986).CrossRefGoogle Scholar
39Mojzes, I., Sebestyen, T., Barna, P. B., Gergely, G., and Szigethy, D., Thin Solid Films 61, 27 (1979).CrossRefGoogle Scholar
40Mojzes, I., Sebestyen, T., and Szigethy, D., Solid-State Electron. 25, 449 (1982).CrossRefGoogle Scholar
41Lince, J. R. and Williams, R. S., Thin Solid Films (to be published).Google Scholar