Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T16:17:35.494Z Has data issue: false hasContentIssue false

Solid-state growth of nickel silicide nanowire by the metal-induced growth method

Published online by Cambridge University Press:  03 March 2011

Joondong Kim
Affiliation:
Department of Electrical Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260
Jong-Uk Bae
Affiliation:
Department of Electrical Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260
Wayne A. Anderson*
Affiliation:
Department of Electrical Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260
Hyun-Mi Kim
Affiliation:
School of Materials Science and Engineering, Seoul National University, Seoul 151-742, Korea
Ki-Bum Kim
Affiliation:
School of Materials Science and Engineering, Seoul National University, Seoul 151-742, Korea
*
a) Address all correspondence to this author. e-mail: waanders@eng.buffalo.edu
Get access

Abstract

Unique nanowire growth was accomplished at 575 °C by the metal-induced growth (MIG) method. This involved a spontaneous reaction between metal and Si. The deposited metal worked as a catalyst layer to grow nanowires in the solid state. Various metals (Ni, Co, and Pd) were used in MIG nanowire fabrication, and the Ni-induced case was successful in demonstrating that metal species should be the dominant factor for growing nanowires. The Ni to Si composition was studied by energy dispersive spectroscopy showing the Ni diffusion inside the nanowire as well as the Ni silicide layer. The practical application of the MIG nanowire was proved by fabricating nanoscale contacts.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Huang, Y., Duan, X., Cui, Y., Lauhon, L.J., Kim, K-H., Lieber, C.M.: Logic gates and computation from assembled nanowire building blocks. Science 294, 1313 (2001).CrossRefGoogle ScholarPubMed
2.Hua, S.F., Wonga, W.Z., Liua, S.S., Wua, Y.C., Sunga, C.L., Huangb, T.Y.: Room temperature two-terminal characteristics in silicon nanowires. Solid State Commun. 125, 351 (2003).CrossRefGoogle Scholar
3.Tresback, J.S., Vasiliev, A.L., Padture, N.P.: Engineered metal-oxide-metal heterojunction nanowires. J. Mater. Res. 20, 2613 (2005).CrossRefGoogle Scholar
4.Wagner, R.S., Ellis, W.C.: Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89 (1964).CrossRefGoogle Scholar
5.Edwards, P.L., Happel, R.J.: Beryllium oxide whiskers and platelets. J. Appl. Phys. 33, 943 (1962).CrossRefGoogle Scholar
6.Morales, A.M., Lieber, C.M.: A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279, 208 (1998).CrossRefGoogle ScholarPubMed
7.Westwater, J., Gosain, D.P., Tomiya, S., Usui, S., Ruda, H.: Growth of silicon nanowires via gold/silane vapor–liquid–solid reaction. J. Vac. Sci. Technol., B 15, 554 (1997).CrossRefGoogle Scholar
8.Wu, Y., Cui, Y., Huynh, L., Barrelet, C.J., Bell, D.C., Lieber, C.M.: Controlled growth and structures of molecular-scale silicon nanowires. Nano Lett. 4, 433 (2004).CrossRefGoogle Scholar
9.Zeng, X.B., Xu, Y.Y., Zhang, S.B., Hu, Z.H., Diao, H.W., Wang, Y.Q., Kong, G.L., Liao, X.B.: Silicon nanowires grown on a pre-annealed Si substrate. J. Cryst. Growth 247, 13 (2003).CrossRefGoogle Scholar
10.Cui, Y., Lauhon, L.J., Gudiksen, M.S., Wang, J., Lieber, C.M.: Diameter-controlled synthesis of single-crystal silicon nanowires. Appl. Phys. Lett. 78, 2214 (2001).CrossRefGoogle Scholar
11.Yu, D.P., Bai, Z.G., Ding, Y., Hang, Q.L., Zhang, H.Z., Wang, J.J., Zou, Y.H., Qian, W., Xiong, G.C., Zhou, H.T., Feng, S.Q.: Nanoscale silicon wires synthesized using simple physical evaporation. Appl. Phys. Lett. 72, 3458 (1998).CrossRefGoogle Scholar
12.Wang, N., Tang, Y.H., Zhang, Y.F., Lee, C.S., Bello, I., Lee, S.T.: Si nanowires grown from silicon oxide. Chem. Phys. Lett. 299, 237 (1999).CrossRefGoogle Scholar
13.Feng, S.Q., Yu, D.P., Zhang, H.Z., Bai, Z.G., Ding, Y.: The growth mechanism of silicon nanowires and their quantum confinement effect. J. Cryst. Growth 209, 513 (2000).CrossRefGoogle Scholar
14.Zhang, H.Z., Yu, D.P., Ding, Y., Bai, Z.G., Hang, Q.L., Feng, S.Q.: Dependence of the silicon nanowire diameter on ambient pressure. Appl. Phys. Lett. 73, 3396 (1998).CrossRefGoogle Scholar
15.Chen, X., Xing, Y., Xu, J., Xiang, J., Yu, D.: Rational growth of highly oriented amorphous silicon nanowire films. Chem. Phys. Lett. 374, 626 (2003).CrossRefGoogle Scholar
16.Yan, H.F., Xing, Y.J., Hang, Q.L., Yu, D.P., Wang, Y.P., Xu, J., Xi, Z.H., Feng, S.Q.: Growth of amorphous silicon nanowires via a solid–liquid–solid mechanism. Chem. Phys. Lett. 323, 224 (2000).CrossRefGoogle Scholar
17.Lee, K-H., Yang, H.S., Baik, K.H., Bang, J., Vanfleet, R.R., Sigmund, W.: Direct growth of amorphous silica nanowires by solid state transformation of SiO2 films. Chem. Phys. Lett. 383, 380 (2004).CrossRefGoogle Scholar
18.Kim, J., Anderson, W.A.: Spontaneous nickel monosilicide nanowire formation by metal induced growth. Thin Solid Films 483, 60 (2005).CrossRefGoogle Scholar
19.Bartur, M., Nicolet, M-A.: Marker experiments for diffusion in the silicide during oxidation of PdSi, Pd2Si, CoSi2, and NiSi2 films on Si. J. Appl. Phys. 54, 5404 (1983).CrossRefGoogle Scholar
20.Finstad, T.G., Mayer, J.W., Nicolet, M-A.: The formation of NiSi from Ni2Si studied with a platinum marker. Thin Solid Films 51, 391 (1978).CrossRefGoogle Scholar
21.Gergaud, P., Megdiche, M., Thomas, O., Chenevier, B.: Influence of Si substrate orientation on stress development in Pd silicide films grown by solid-state reaction. Appl. Phys. Lett. 83, 1334 (2003).CrossRefGoogle Scholar
22.Gambino, J.P., Colgan, E.G.: Silicides and ohmic contacts. Mater. Chem. Phys. 52, 99 (1998).CrossRefGoogle Scholar
23.Ottaviani, G.: Interface metallurgy and electronic properties of silicides. J. Vac. Sci. Technol. 18, 924 (1981).CrossRefGoogle Scholar
24.Hayzelden, C., Batstone, J.L.: Silicide formation and silicide-mediated crystallization of nickel-implanted amorphous silicon thin films. J. Appl. Phys. 73, 8279 (1993).CrossRefGoogle Scholar
25.Kim, J., Anderson, W.A., Song, Y-J., Kim, G.B.: Self-assembled nanobridge formation and spontaneous growth of metal-induced nanowires. Appl. Phys. Lett. 86, 253101 (2005).CrossRefGoogle Scholar
26.Kim, J., Anderson, W.A.: Driect electrical measurement of the self-assembled nickel silicide nanowire. Nano Lett. 6, 1356 (2006).CrossRefGoogle Scholar