Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-14T07:06:15.409Z Has data issue: false hasContentIssue false

Solid-state nuclear magnetic resonance characterization of PE–PEG/silica hybrid materials prepared by microwave-assisted sol-gel process

Published online by Cambridge University Press:  31 January 2011

Marco Geppi*
Affiliation:
Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Risorgimento 35, 56126 Pisa, Italy
Giulia Mollica
Affiliation:
Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Risorgimento 35, 56126 Pisa, Italy
Silvia Borsacchi
Affiliation:
Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Risorgimento 35, 56126 Pisa, Italy
Michele Marini
Affiliation:
Dipartimento di Ingegneria dei Materiali e dell’Ambiente, Università di Modena e Reggio Emilia, Via Vignolese 905/A, 41100 Modena, Italy; and Reference Research Centre LABoratorio di Nanocompositi e Ibridi Polimerici multifunzionali (NIPLAB) of consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM) Consortium, Italy
Maurizio Toselli
Affiliation:
Dipartimento di Chimica Applicata e Scienza dei Materiali, Università di Bologna, Viale Risorgimento 2, 40136 Bologna, Italy; and Reference Research Centre LABoratorio di Nanocompositi e Ibridi Polimerici multifunzionali (NIPLAB) of consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM) Consortium, Italy
Francesco Pilati
Affiliation:
Dipartimento di Ingegneria dei Materiali e dell’Ambiente, Università di Modena e Reggio Emilia, Via Vignolese 905/A, 41100 Modena, Italy; and Reference Research Centre LABoratorio di Nanocompositi e Ibridi Polimerici multifunzionali (NIPLAB) of consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM) Consortium, Italy
*
a)Address all correspondence to this author.e-mail: mg@dcci.unipi.it
Get access

Abstract

Organic–inorganic hybrid materials were prepared by sol-gel processes starting from tetraethoxysilane (TEOS) and a triethoxysilane-terminated polyethylene–b-poly(ethylene glycol) copolymer (PE–PEG–Si). Curing of the initial reactant solution was carried out under different reaction conditions, and the materials so obtained were investigated by solid-state nuclear magnetic resonance (NMR). In particular, the molecular structure resulting from a conventional oven heating was compared with that obtained by unconventional microwave heating. The results highlighted that the extent of condensation reactions occurring over several hours under conventional heating is very similar to that resulting in 1 min under microwave heating. Additionally, 29Si–magic angle spinning (MAS) spectra showed that even though the overall extent of cross-linking in the inorganic network is only slightly affected by the thermal history of the sample, significantly different distributions of silicon sites can be present. 13C–CP/MAS selective spectra revealed the presence of PE “crystalline” domains within the organic phase, not detectable by differential scanning calorimetry (DSC). Finally, 1H–MAS spectra showed that different hydrogen-bond interactions are present in samples obtained under different curing conditions.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Schmidt, H.: New type of non-crystalline solids between inorganic and organic materials. J. Non-Cryst. Solids 73, 681 1985CrossRefGoogle Scholar
2Wen, J.Wilkes, G.L.: Organic/inorganic hybrid network materials by the sol-gel approach. Chem. Mater. 8, 1667 1996CrossRefGoogle Scholar
3Gilman, J.W., Jackson, C.L., Morgan, A.B., Harris, R., Manias, E., Giannelis, E.P., Wuthenow, M., Hilton, D.Phillips, S.H.: Flammability properties of polymer-layered silicate nanocomposites. Polypropylene and polystyrene nanocomposites. Chem. Mater. 12, 1866 2000CrossRefGoogle Scholar
4Organic/Inorganic Hybrid Materials, edited by R.M. Laine, C. Sanchez, C.J. Brinker, and E. Giannelis (Mater. Res. Soc. Symp. Proc. 628, Warrendale, PA, 2000)Google Scholar
5Sanchez, C.Lebeau, B.: Design and properties of hybrid organic–inorganic nanocomposites for photonics. Mater. Res. Soc. Bull. 26, 377 2001CrossRefGoogle Scholar
6Ogoshi, T., Itoh, H., Kim, K.M.Chujo, Y.: Synthesis of organic– inorganic polymer hybrids having interpenetrating polymer network structure by formation of ruthenium–bipyridyl complex. Macromolecules 35, 334 2002CrossRefGoogle Scholar
7Brinker, C.J.Scherer, G.W.: Sol-Gel Science, The Physics and Chemistry of Sol-Gel Processing Academic Press Inc. San Diego, CA 1990Google Scholar
8Uhlmann, D.R.Teowee, G.: Sol-gel science and technology: Current state and future prospects. J. Sol.-Gel Sci. Technol. 13, 153 1998CrossRefGoogle Scholar
9Sakka, S.: Handbook of Sol-Gel Science and Technology: III. Application of Sol-Gel Technology edited by S. Sakka Kluwer Academic Publishers Boston 2004Google Scholar
10Sanchez, C., Julian, B., Belleville, P.Popall, M.: Applications of hybrid organic–inorganic nanocomposites. J. Mater. Chem. 15, 3559 2005CrossRefGoogle Scholar
11Phani, A.R.Santucci, S.: Evaluation of structural and mechanical properties of aluminum oxide thin films deposited by a sol-gel process: Comparison of microwave to conventional anneal. J. Non-Cryst. Solids 352, 4093 2006CrossRefGoogle Scholar
12Phani, A.R.Santucci, S.: Microwave irradiation as an alternative source for conventional annealing: A study of pure TiO2, NiTiO3, CdTiO3 thin films by a sol-gel process for electronic applications. J. Phys.: Condens. Mater. 18, 6965 2006Google Scholar
13Di Fiore, R.R.Clark, D.E.: Microwave processing of silica sol-gels. Ceram. Eng. Sci. Proc.,16, 1089 1995CrossRefGoogle Scholar
14Adachi, K., Iwamura, T.Chujo, Y.: Microwave assisted synthesis of organic–inorganic polymer hybrids. Polym. Bull. 55, 309 2005CrossRefGoogle Scholar
15Leonelli, C., Messori, M., Pilati, F.Veronesi, P.: Non-conventional curing of organic–inorganic hybrids. Macromol. Symp. 228, 229 2005CrossRefGoogle Scholar
16Toselli, M., Marini, M., Fabbri, P., Messori, M.Pilati, F.: Sol-gel derived hybrid coatings for the improvement of scratch resistance of polyethylene. J. Sol.-Gel Sci. Technol. 43, 73 2007CrossRefGoogle Scholar
17Marini, M., De Niederhausem, S., Iseppi, R., Bondi, M., Sabia, C., Toselli, M.Pilati, F.: Antibacterial activity of plastics coated with silver-doped organic–inorganic hybrid coatings prepared by sol-gel processes. Biomacromolecules 8, 1246 2007CrossRefGoogle ScholarPubMed
18Sarmento, V.H.V., Frigerio, M.R., Dahmouche, K., Pulcinelli, S.H.Santilli, C.V.: Evolution of rheological properties and local structure during gelation of siloxane-polymethylmethacrylate hybrid materials. J. Sol.-Gel Sci. Technol. 37, 179 2006CrossRefGoogle Scholar
19Sun, D.H., Zhang, R., Liu, Z.M., Huang, Y., Wang, Y., He, J., Han, B.X.Yang, G.Y.: Polypropylene/silica nanocomposites prepared by in-situ sol-gel reaction with the aid of CO2. Macromolecules 38, 5617 2005CrossRefGoogle Scholar
20Komori, Y., Nakashima, H., Hayashi, S.Sugahara, Y.: Silicon-29 cross-polarization/magic-angle-spinning NMR study of inorganic–organic hybrids: Homogeneity of sol-gel derived hybrid gels. J. Non-Cryst. Solids 351, 97 2005CrossRefGoogle Scholar
21Jain, S., Goossens, H., Picchioni, F., Magusin, P., Mezari, B.van Duin, M.: Synthetic aspects and characterization of polypropylene-silica nanocomposites prepared via solid-state modification and sol-gel reactions. Polymer 46, 6666 2005CrossRefGoogle Scholar
22Jiang, W.J., Wu, C.P.Kuo, P.L.: Solid polymer electrolytes X: Preparation and characterizations of polyether-siloxane, organic– inorganic, hybrid nanocomposites complexed with lithium perchlorate. J. Polym. Sci. Pol. Phys. 42, 1928 2004Google Scholar
23Wu, C.S.Liao, H.T.: Modification of polyethylene–octene elastomer by silica through a sol-gel process. J. Appl. Polym. Sci. 88, 966 2003CrossRefGoogle Scholar
24Lambert, A.A., Mauritz, K.A.Schiraldi, D.A.: [Poly(ethylene terephthalate) ionomer]/silicate hybrid materials via polymer- in situ sol-gel reactions. J. Appl. Polym. Sci. 84, 1749 2002CrossRefGoogle Scholar
25Young, S.K., Jarrett, W.L.Mauritz, K.A.: Nafion/ORMOSIL nanocomposites via polymer-in situ sol-gel reactions. 1. Probe of ORMOSIL phase nanostructures by 29Si solid-state NMR spectroscopy. Polymer 43, 2311 2002CrossRefGoogle Scholar
26Brus, J.: Solid-state NMR study of phase separation and order of water molecules and silanol groups in polysiloxane networks. J. Sol.-Gel Sci. Technol. 25, 17 2002CrossRefGoogle Scholar
27Lindner, E., Brugger, S., Steinbrecher, S., Plies, E.Mayer, H.A.: Investigations on the mobility of novel sol-gel processed inorganic–organic hybrid materials. J. Mater. Chem. 11, 1393 2001CrossRefGoogle Scholar
28Gao, Y., Choudhury, N.R., Dutta, N., Matisons, J., Reading, M.Delmotte, L.: Organic–inorganic hybrid from ionomer via sol-gel reaction. Chem. Mater. 13, 3644 2001CrossRefGoogle Scholar
29Chan, C-K.Chu, I-M.: Phase behavior and molecular chain environment of organic–inorganic hybrid materials based on poly(n-butyl methacrylate-co-(3-(methacryloxypropyl)) trimethoxysilane). Polymer 42, 6823 2001CrossRefGoogle Scholar
30Young, S.K., Jarrett, W.L.Mauritz, K.A.: Studies of the aging of Nafion/silicate nanocomposites using 29Si solid state NMR spectroscopy. Polym. Eng. Sci. 41, 1529 2001CrossRefGoogle Scholar
31Siuzdak, D.A., Start, P.R.Mauritz, K.A.: Surlyn/silicate hybrid materials. I. Polymer in situ sol-gel process and structure characterization. J. Appl. Polym. Sci. 77, 2832 20003.0.CO;2-K>CrossRefGoogle Scholar
32Hsiue, G.H., Kuo, W.J., Huang, Y.P.Jeng, R.J.: Microstructural and morphological characteristics of PS–SiO2 nanocomposites. Polymer 41, 2813 2000CrossRefGoogle Scholar
33Mazur, M., Mlynarik, V., Valko, M.Pelikan, P.: The time evolution of the sol-gel process: 29Si NMR study of the hydrolysis and condensation reactions of tetraethoxysilane. Appl. Magn. Reson. 18, 187 2000CrossRefGoogle Scholar
34Brus, J.Dybal, J.: Solid-state NMR study of structure, size and dynamics of domains in hybrid siloxane networks. Polymer 41, 5269 2000CrossRefGoogle Scholar
35De Paul, S.M., Zwanziger, J.W., Ulrich, R., Wiesner, U.Spiess, H.W.: Structure, mobility, and interface characterization of self-organized organic–inorganic hybrid materials by solid-state NMR. J. Am. Chem. Soc. 121, 5727 1999CrossRefGoogle Scholar
36Laridjani, M., Lafontaine, E., Bayle, J.P.Judeinstein, P.: Structural studies of ideal organic–inorganic nanocomposites by high resolution diffractometry and NMR spectroscopy techniques. J. Mater. Sci. 34, 5945 1999CrossRefGoogle Scholar
37Chen, W., Feng, H., He, D.Ye, C.: High resolution solid-state NMR and DSC study of poly (ethylene glycol)-silicate hybrid materials via sol-gel process. J. Appl. Polym. Sci. 67, 139 19983.0.CO;2-X>CrossRefGoogle Scholar
38Liu, Q., Shi, W., Babonneau, F.Interrante, L.V.: Synthesis of polycarbosilane/siloxane hybrid polymers and their pyrolytic conversion to silicon oxycarbide ceramics. Chem. Mater. 9, 2434 1997CrossRefGoogle Scholar
39Peeters, M.P.J., Wakelkamp, W.J.J.Kentgens, A.P.M.: A Si-29 solid-state magic-angle-spinning nuclear-magnetic-resonance study of TEOS-based hybrid materials. J. Non-Cryst. Solids. 189, 77 1995CrossRefGoogle Scholar
40Patel, S., Bandyopadhyay, A., Vijayabaskar, V.Bhowmick, A.K.: Effect of acrylic copolymer and terpolymer composition on the properties of in-situ polymer/silica hybrid nanocomposites. J. Mater. Sci. 41, 927 2006CrossRefGoogle Scholar
41Liang, W.J., Chen, Y.P., Wu, C.P.Kuo, P.L.: Solid polymer electrolytes. XI. Preparation, characterization and ionic conductivity of new plasticized polymer electrolytes based on chemical-covalent polyether-siloxane hybrids. J. Appl. Polym. Sci. 100, 1000 2006CrossRefGoogle Scholar
42Brik, M.E., Titman, J.J., Bayle, J.P.Judeinstein, P.: Mapping of motional heterogeneity in organic–inorganic nanocomposite gels. J. Polym. Sci. Pol. Lett. 34, 2533 19963.0.CO;2-U>CrossRefGoogle Scholar
43Borsacchi, S., Geppi, M., Veracini, C.A., Fallani, F., Ricci, L.Ruggeri, G.: Improving compatibility in LDPE-silica dispersions by photo-grafting reaction. Preparation and solid state NMR investigation. J. Mater. Chem. 16, 4581 2006CrossRefGoogle Scholar
44Borsacchi, S., Geppi, M., Ricci, L., Ruggeri, G.Veracini, C.A.: Interactions at the surface of organophilic-modified Laponites: A multinuclear solid-state NMR study. Langmuir 23, 3953 2007CrossRefGoogle ScholarPubMed
45Cudby, M.E.A., Harris, R.K., Metcalfe, K., Packer, K.J., Smith, P.W.R., Bunn, A.: 13C and 1H n.m.r. studies of solid polyolefines. Polymer 26, 169 1985CrossRefGoogle Scholar
46Silveira, K.F., Valeria, I., Yoshida, P.Nunes, S.P.: Phase-separation in PMMA silica sol-gel systems. Polymer 36, 1425 1995CrossRefGoogle Scholar
47McBrierty, V.Paker, K.J.: Nuclear Magnetic Resonance in Solid Polymers Cambridge University Press Cambridge 1993CrossRefGoogle Scholar
48Bartolotta, A., Forte, C., Geppi, M., Minniti, D.Visalli, G.: Solid state NMR study of sodium thiocyanate/poly(ethylene oxide) electrolytes. Solid State Nucl. Magn. Reson. 8, 231 1997CrossRefGoogle ScholarPubMed
49Dechter, J.J.: Proton and carbon-13 relaxation for the resolved crystalline and amorphous phases of polyethylene oxide. J. Polym. Sci.: Polym. Lett. Ed. 23, 261 1985Google Scholar
50Utracki, L.A.: Polymer Alloys and Blends Hauser Munich 1989Google Scholar
51Komori, Y., Miyoshi, M., Hayashi, S., Sugahara, Y.Kuroda, K.: Characterization of silanol groups in protonated magadiite by H-1 and H-2 solid-state nuclear magnetic resonance. Clay Clay Miner. 6, 632 2000CrossRefGoogle Scholar
52Simon, A., Gougeon, R.D., Paillaud, J-L., Valtchev, V.Kessler, H.: Characterization of the acidity of Mu-14 by solid-state NMR and NH3-STD. Phys. Chem. Chem. Phys. 3, 867 2001CrossRefGoogle Scholar
53Eckert, H., Yesinowski, J.P.Stolper, E.M.: Quantitative NMR studies of water in silicate glasses. Solid State Ionics 32/33, 298 1989CrossRefGoogle Scholar