Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-05T01:20:44.553Z Has data issue: false hasContentIssue false

Stabilization of perovskite phase and dielectric properties of Pb(Zn, Mg)1/3Nb2/3O3-PbTiO3 ceramics prepared by excess constituent oxides

Published online by Cambridge University Press:  03 March 2011

Hyun M. Jang*
Affiliation:
Department of Materials Science and Engineering, and Advanced Ceramics Processing Science Laboratory, Pohang University of Science and Technology (POSTECH), Pohang 790-600, Republic of Korea
Kyu-Mann Lee
Affiliation:
Department of Materials Science and Engineering, and Advanced Ceramics Processing Science Laboratory, Pohang University of Science and Technology (POSTECH), Pohang 790-600, Republic of Korea
Moon-Ho Lee
Affiliation:
Department of Metallurgy, College of Engineering, Yeungnam University, Kyungsan 713-800, Republic of Korea
*
a)Author to whom correspondence should be addressed.
Get access

Abstract

The perovskite phase in PZN-PMN-PT (PbZn1/3Nb2/3O3-PbMg1/3Nb2/3O3-PbTiO3) pseudoternary ceramics was stabilized by the addition of excess constituent divalent oxides (PbO, MgO, and ZnO). 5 mol% excess MgO or 7.5 mol% excess PbO was sufficient to eliminate the remnant cubic pyrochlore phase after sintering at 1100 °C for 1 h. The enhanced diffuse phase transition (DPT) and the decrease in the electrical resistivity were observed in the presence of excess ZnO or MgO. These were interpreted in terms of the additional formation of negatively charged, short-range ordered 1: 1 domains with a concomitant generation of charge carriers (holes). The behavior of excess MgO or ZnO at concentrations above 5 mol% was studied by examining complex impedance patterns.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Kuwata, J., Uchino, K., and Nomura, S., Ferroelectrics 37, 579 (1981).CrossRefGoogle Scholar
2Kuwata, J., Uchino, K., and Nomura, S., Jpn. J. Appl. Phys. 22 (9), 1298 (1982).CrossRefGoogle Scholar
3Jang, H. M., Oh, S. H., and Moon, J. H., J. Am. Ceram. Soc. 75 (1), 82 (1992).CrossRefGoogle Scholar
4Gururaja, T. R., Safari, A., and Halliyal, A., Am. Ceram. Soc. Bull. 65 (12), 1601 (1986).Google Scholar
5Lejeune, M. and Boilot, J. P., Phys. Colloq. Cl, Suppl. 2, 47, CL–895 (1986).Google Scholar
6Uchino, K., Nomura, S., Cross, L. E., Jang, S. J., and Newnham, R. E., J. Appl. Phys. 51 (2), 1142 (1980).CrossRefGoogle Scholar
7Nomura, S. and Uchino, K., Ferroelectrics 41, 117 (1982).CrossRefGoogle Scholar
8Swartz, S. L. and Shrout, T. R., Mater. Res. Bull. XVII, 1245 (1982).CrossRefGoogle Scholar
9Ravindranathan, P., Komarneni, S., Bhalla, A. S., Roy, R., and Cross, L. E., Ceram. Trans., edited by Messing, G. L., Fuller, E. R. Jr., and Hausner, H. (The American Ceramic Society, Westerville, OH, 1984), Vol. 1, pp. 182189.Google Scholar
10Ravindranathan, P., Komarneni, S., and Roy, R., J. Am. Ceram. Soc. 73 (4), 1024 (1990).CrossRefGoogle Scholar
11Jang, H. M., Cho, S. R., and Lee, K. M., J. Am. Ceram. Soc. (in press).Google Scholar
12Inada, M., Jpn. Natl. Tech. Rept. 27 (1), 95 (1977).Google Scholar
13Lejeune, M. and Boilot, J. P., Ceram. Int. 8 (3), 99 (1982).CrossRefGoogle Scholar
14Wang, H. C. and Schulze, W. A., J. Am. Ceram. Soc. 73 (4), 825 (1990).CrossRefGoogle Scholar
15Chen, S. Y., Wang, CM., and Cheng, S.Y., J. Am. Ceram. Soc. 74 (10), 2506 (1991).CrossRefGoogle Scholar
16Swartz, S. L., Shrout, T. R., Schulze, W. A., and Cross, L. E., J. Am. Ceram. Soc. 67 (5), 311 (1984).CrossRefGoogle Scholar
17Papet, P., Dougherty, J. P., and Shrout, T. R., J. Mater. Res. 5, 2902 (1990).CrossRefGoogle Scholar
18Randall, C. A., Hilton, A. D., Barber, D. J., and Shrout, T. R., J. Mater. Res. 8, 880 (1993).CrossRefGoogle Scholar
19Smolenskii, G. M., Proc. Int. Meet. Ferroelectr., 2nd, 1969, 26 (1970).Google Scholar
20Rolov, B. N., Sov. Phys.-Solid State (Engl. Transl.) 6, 1676 (1965).Google Scholar
21Pilgrim, S. M., Sutherland, A. E., and Winzer, S. R., J. Am. Ceram. Soc. 73 (10), 3122 (1990).CrossRefGoogle Scholar
22Randall, C. A., Bhalla, A. S., Shrout, T. R., and Cross, L. E., J. Mater. Res. 5, 829 (1990).CrossRefGoogle Scholar
23Harmer, M. P., Chen, J., Peng, P., Chan, H. M., and Smith, D. M., Ferroelectrics 97, 263 (1989).CrossRefGoogle Scholar
24Chen, J., Chan, H. M., and Harmer, M. P., J. Am. Ceram. Soc. 72 (4), 593 (1989).CrossRefGoogle Scholar
25Setter, N. and Cross, L. E., J. Appl. Phys. 51 (8), 4356 (1980).CrossRefGoogle Scholar
26Groves, P., J. Phys. C: Solid State Phys. 19, 118 (1986).Google Scholar
27Hilton, A. D., Barber, D. J., Randall, C. A., and Shrout, T. R., J. Mater. Sci. 25, 3461 (1990).CrossRefGoogle Scholar
28Goo, E., Yamamoto, T., and Okazaki, K., J. Am. Ceram. Soc. 69 (8), C-188 (1986).CrossRefGoogle Scholar
29Irvine, J. T. S., Huanosta, A., Valenzuela, R., and West, A. R., J. Am. Ceram. Soc. 73 (3), 729 (1990).CrossRefGoogle Scholar