Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T16:57:17.216Z Has data issue: false hasContentIssue false

Stress Evolution in Sputter-deposited Fe–Pd Shape-memory Thin Films

Published online by Cambridge University Press:  03 March 2011

Y. Sugimura
Affiliation:
Division of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138
I. Cohen-Karni
Affiliation:
Division of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138
P. McCluskey
Affiliation:
Division of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138
J.J. Vlassak*
Affiliation:
Division of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138
*
a) Address all correspondence to this author. e-mail: vlassak@esag.harvard.edu
Get access

Abstract

Fe–Pd films with Pd content varying between 26 and 30 at.% have been deposited by means of magnetron sputtering of elemental Fe and Pd targets. As-deposited films are highly supersaturated solid solutions of Pd in Fe that have a body-centered-cubic crystal structure and a very fine grain size. Substrate curvature measurements indicate that the films undergo an irreversible densification when heated above 100 °C. This densification is attributed to a structural change that is also observed in other supersaturated systems with a substantial atomic size difference between the constituents. It is possible to retain the high-temperature austenite phase at low temperature by annealing the films at 900 °C followed by rapid cooling. Depending on film composition, this metastable austenitic phase transforms to either a body-centered tetragonal (bct) or a face-centered tetragonal (fct) martensite around room temperature. Substrate curvature measurements show that formation of the fct martensite is reversible, while that of bct martensite is not. The fct transformation occurs at lower Pd content and higher temperature than reported for bulk materials. Both the fct and the fcc phase show a strong Invar effect at lower temperature and Pd content than observed in the bulk.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Shimizu, K. and Kakeshita, T.: Effect of magnetic fields on martensitic transformations in ferrous alloys and steels. ISIJ Int. 29, 97 (1989).CrossRefGoogle Scholar
2Dunne, D.P. and Wayman, C.M.: The effect of austenite ordering on the martensite transformation in Fe-Pt alloys near the composition Fe3Pt: I. Morphology and transformation characteristics. Metall. Trans. 4, 137 (1973).CrossRefGoogle Scholar
3Dunne, D.P. and Wayman, C.M.: The effect of austenite ordering on the martensite transformation in Fe-Pt alloys near the composition Fe3Pt: II. Crystallography and general features. Metall. Trans. 4, 147 (1973).CrossRefGoogle Scholar
4James, R.D. and Wuttig, M.: Magnetostriction of martensite. Philos. Mag. A 77, 1273 (1998).CrossRefGoogle Scholar
5Kakeshita, T., Takeuchi, T., Fukuda, T., Tsujiguchi, M., Saburi, T., Oshima, R. and Muto, S.: Giant magnetostriction in an ordered Fe3Pt single crystal exhibiting a martensitic transformation. Appl. Phys. Lett. 77, 1502 (2000).CrossRefGoogle Scholar
6Kato, H., Wada, T., Liang, Y., Tagawa, T., Taya, M. and Mori, T.: Martensite structure in polycrystalline Fe–Pd. Mater. Sci. Eng. A332, 134 (2002).CrossRefGoogle Scholar
7O’Handley, R.C.: Model for strain and magnetization in magnetic shape memory alloys. J. Appl. Phys. 83, 3263 (1998).CrossRefGoogle Scholar
8Ullakko, K., Huang, J.K., Kantner, C., O’Handley, R.C. and Kokorin, V.V.: Large magnetic-field-induced strains in Ni2MnGa single crystals. Appl. Phys. Lett. 69, 1966 (1996).CrossRefGoogle Scholar
9Inoue, S., Inoue, K., Fujita, S. and Koterazawa, K.: Fe–Pd ferromagnetic shape memory alloy thin films made by dual source DC magnetron sputtering. Mater. Trans. 44, 298 (2003).CrossRefGoogle Scholar
10Inoue, S., Inoue, K., Koterazawa, K. and Mizuuchi, K.: Shape memory behavior of Fe–Pd alloy thin films prepared by dc magnetron sputtering. Mater. Sci. Eng. A339, 29 (2003).CrossRefGoogle Scholar
11Sugimura, Y., Cohen-Karni, T., McCluskey, P. and Vlassak, J.J. Fabrication and characterization of Fe–Pd ferromagnetic shape-memory thin films, in Materials and Devices for Smart Systems, edited by Furuya, Y., Quandt, E., Zhang, Q., Inoue, K., and Shahinpoor, M. (Mater. Res. Soc. Symp. Proc. 785, Warrendale, PA, 2004), D7.4.1, p. 201.Google Scholar
12Wang, Z., Iijima, T., He, G., Oikawa, K., Wulff, L., Sanada, N. and Furuya, Y.: Preparation of sputter-deposited Fe–Pd thin films. Mater. Trans., Jpn. Inst. Met. 41, 1139 (2000).Google Scholar
13Wang, Z., Iijima, T., He, G., Takahashi, T. and Furuya, Y.: Structural characteristics and magnetic properties of Fe–Pd thin films. Int. J. Appl. Electromag. Mech. 12, 61 (2000).CrossRefGoogle Scholar
14Oshima, R.: Successive martensitic transformations in Fe–Pd alloys. Scripta Metall. 15, 829 (1981).CrossRefGoogle Scholar
15Sugiyama, M., Oshima, R. and Fujita, F.E.: Martensitic transformation in the Fe–Pd alloy system. Trans. Jpn. Inst. Met. 25, 585 (1984).CrossRefGoogle Scholar
16Sugiyama, M., Oshima, R. and Fujita, F.E.: Mechanism of fcc–fct thermoelastic martensite transformation in Fe–Pd alloys. Trans. Jpn. Inst. Met. 27, 719 (1986).CrossRefGoogle Scholar
17Doerner, M.F. and Nix, W.D.: Stresses and deformation processes in thin films on substrates. CRC Crit. Rev. Solid State Mater. Sci. 14, 225 (1988).CrossRefGoogle Scholar
18Villars, P. and Calvert, L.D.: Pearson’s Handbook of Crystallographic Data for Intermetallic Phases (American Society for Metals, Metals Park, OH, 1985).Google Scholar
19Keller-Flaig, R-M. and Arzt, E.: Mechanical and thermal expansion behavior of thin Fe-36 wt.-% Ni Invar films. Adv. Eng. Mater. 4, 305 (2002).3.0.CO;2-6>CrossRefGoogle Scholar
20Matsui, M., Shimizu, T. and Adachi, K.: Invar anomalies of Fe–Pd alloys. Physica 119B, 84 (1983).Google Scholar
21Bai, H.Y., Michaelsen, C. and Bormann, R.: Inverse melting in a system with positive heats of formation. Phys. Rev. B 56, R11 (1997).CrossRefGoogle Scholar
22Biegel, W., Schaper, W., Krebs, H-U., Hoffmann, J., Freyhardt, H.C., Busch, R. and Bormann, R.: Phase-transformations of supersaturated sputtered Nb Co films. J. Phys. 51, C4189 (1990).Google Scholar
23Bormann, R.: Thermodynamic and kinetic requirements for inverse melting. Mater. Sci. Eng. A 179/180, 31 (1994).CrossRefGoogle Scholar
24Muto, S., Oshima, R. and Fujita, F.E.: Elastic softening and elastic strain-energy consideration in the fcc–fct transformation of Fe–Pd alloys. Acta Metall. Mater. 38, 685 (1990).CrossRefGoogle Scholar
25Oshima, R., Muto, S. and Fujita, F.E.: Initiation of fcc–fct thermoelastic martensite-transformation from premartensitic state of Fe-30 at percent-Pd alloys. Mater. Trans. Jpn. Inst. Met. 33, 197 (1992).Google Scholar
26Sohmura, T., Oshima, R. and Fujita, F.E.: Thermoelastic fcc-fct martensitic transformation in Fe–Pd alloy. Scripta Metall. 14, 855 (1980).CrossRefGoogle Scholar
27Wollants, P., Roos, J.R. and Delaey, L.: Thermally-induced and stress-induced thermoelastic martensitic transformations in the reference frame of equilibrium thermodynamics. Prog. Mater. Sci. 37, 227 (1993).CrossRefGoogle Scholar
28Miyazaki, S. and Ishida, A.: Shape memory characteristics of sputter-deposited Ti–Ni thin films. Mater. Trans. Jpn. Inst. Met. 35, 14 (1994).Google Scholar
29Liu, Y. and Huang, X.: Substrate-induced stress and transformation characteristics of a deposited Ti–Ni–Cu thin film. Philos. Mag. 84, 1919 (2004).CrossRefGoogle Scholar
30Kato, H., Liang, Y. and Taya, M.: Stress-induced fcc/fct phase transformation in Fe–Pd alloy. Scripta Mater. 46, 471 (2002).CrossRefGoogle Scholar
31Kussmann, A. and Jessen, K.: Magnetische und dilatometrische Messungen zur Umwandlungskinetik der Eisen–Palladium Legierungen. Z. Metallkd. 54, 504 (1963).Google Scholar
32Matsui, M. and Adachi, K.: Magneto-elastic properties and Invar anomaly of Fe–Pd alloys. Phys. B 161, 53 (1989).CrossRefGoogle Scholar
33Nakayama, T., Kikuchi, M. and Fukamichi, K.: Young’s modulus and the ΔE effect of Fe–Pd Invar alloys. J. Phys. F: Metal Phys. 10, 715 (1980).CrossRefGoogle Scholar
34Hausch, G. and Schrey, P.: Thermal expansion of Invar and Superinvar after thermomechanical treatment. Z. Metallkd. 82, 891 (1991).Google Scholar
35Shiga, M. Invar alloys, in Materials Science and Technology: A Comprehensive Treatment, edited by Cahn, R.W., Haasen, P., and Kramer, E.J. (VCH Verlagsgesellschaft GmbH, New York, 1990), pp. 159210.Google Scholar