Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-14T16:48:05.398Z Has data issue: false hasContentIssue false

Structural and electrochemical properties of Ti–Ru–Fe–O alloys prepared by high energy ball-milling

Published online by Cambridge University Press:  31 January 2011

S-H. Yip
Affiliation:
INRS-Énergie et Matériaux, 1650 Blvd. Lionel-Boulet, Varennes, Québec, Canada J3X 1S2
D. Guay
Affiliation:
INRS-Énergie et Matériaux, 1650 Blvd. Lionel-Boulet, Varennes, Québec, Canada J3X 1S2
S. Jin
Affiliation:
Department of Mining and Metallurgy, Laval University, Ste-Foy, Québec, Canada G1K 7P4
E. Ghali
Affiliation:
Department of Mining and Metallurgy, Laval University, Ste-Foy, Québec, Canada G1K 7P4
A. Van Neste
Affiliation:
Department of Mining and Metallurgy, Laval University, Ste-Foy, Québec, Canada G1K 7P4
R. Schulz
Affiliation:
Technologie des Matériaux, Institut de recherche d'Hydro-Québec, 1800 Blvd. Lionel-Boulet, Varennes, Québec, Canada J3X 1S1
Get access

Abstract

The structural and electrochemical properties of the Ti–Ru–Fe–O system have been studied over the whole ternary metal compositional range, keeping constant the oxygen content at 30 at.%. The phase diagram was explored systematically by varying the composition of the material along one of the following axes: (i) constant Ru content of 16 at. %; (ii) constant Ti/Ru ratio of 2; (iii) constant Ti/Fe ratio of 1.6. For O/Ti ratios equal or below unity, the most prominent peaks observed in the x-ray diffraction patterns belong to a B2 structure. For O/Ti ratio larger than unity, stable titanium oxide phases are formed, which coexist with a cubic Fe-like or hcp-Ru like phases depending on the Fe/Ru ratio. Powder compositions with stoichiometry close to Ti2RuFeO2 are of interest due to good electrocatalytic properties, long-term stability, and low Ru content.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Birringer, R., Mater. Sci. Eng. A 117, 33 (1989).CrossRefGoogle Scholar
2.Siegel, R. W., Mater. Res. Bull. XV(10), 60 (1990).CrossRefGoogle Scholar
3.Siegel, R. W., Annu. Rev. Mater. Sci. 21, 559 (1991).CrossRefGoogle Scholar
4.Yamashita, H., Sakai, N., Funabiki, T., Yoshida, S., and Isozumi, Y., J. Chem. Soc., Faraday Trans. 1 83, 2895 (1987).Google Scholar
5.Yoshizawa, Y., Oguma, S., and Yamauchi, K., J. Appl. Phys. 64, 6044 (1988).CrossRefGoogle Scholar
6.Fecht, H. J., Hellstern, E., Fu, Z., and Johnson, W. L., in Advances in Powder Metallurgy (MPIF, Princeton, NJ, 1989), Vol. 2, pp. 111122.Google Scholar
7.Schulz, R., Huot, J. Y., Trudeau, M. L., Dignard-Bailey, L., Yan, Z. H., Jin, S., Lamarre, A., Ghali, E., and Van Neste, A., J. Mater. Res. 9, 2998 (1994).CrossRefGoogle Scholar
8.Van Neste, A., Yip, S. H., Jin, S., Boily, S., Ghali, E., Guay, D., and , R. Schulz, Mater. Sci. Forum 225–227, 795 (1996).CrossRefGoogle Scholar
9.Blouin, M., Guay, D., Boily, S., Van Neste, A., and Schulz, R., Mater. Sci. Forum 225–227, 801 (1996).CrossRefGoogle Scholar
10.Blouin, M., Guay, D., Huot, J., and Schulz, R., J. Mater. Res. 12, 1492 (1997).CrossRefGoogle Scholar
11.Blouin, M., Guay, D., and Schulz, R., Nanostructured Materials (submitted).Google Scholar
12.Ray, R., Giessen, B. C., and Grant, N., J. Metal. Trans. 3, 627 (1972).CrossRefGoogle Scholar
13.Raub, V. E. and Röschel, E. Z., Metallk. 12, 455 (1963).Google Scholar
14.Van Neste, A., Lamarre, A., Trudeau, M. L., and Schulz, R., J. Mater. Res. 7, 2412 (1992).CrossRefGoogle Scholar
15.Constitution of Binary Alloys, First supplement, edited by Elliott, R. P. (McGraw-Hill Inc., New York, 1975), p. 431.Google Scholar
16.Koch, C. C., Annu. Rev. Mater. Sci. 19, 121 (1989).CrossRefGoogle Scholar
17.Qi, M., Zhu, M., and Yang, D. Z., J. Mater. Sci. Lett. 13, 966 (1994).CrossRefGoogle Scholar