Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T16:39:28.316Z Has data issue: false hasContentIssue false

Structural investigation of Ba6−3xLn8+2xTi18O54 (x = 0.27, Ln = Sm) by single crystal x-ray diffraction in space group Pnma(No. 62)

Published online by Cambridge University Press:  31 January 2011

C. J. Rawn
Affiliation:
“Jožef Stefan” Institute, University of Ljubljana, Jamova 39, 1000 Ljubljana, Slovenia
D. P. Birnie III
Affiliation:
Department of Materials Science and Engineering, University of Arizona, Tucson, Arizona 85721
M. A. Bruck
Affiliation:
Department of Chemistry, University of Arizona, Tucson, Arizona 85721
J. H. Enemark
Affiliation:
Department of Chemistry, University of Arizona, Tucson, Arizona 85721
R. S. Roth
Affiliation:
Victor Idaho Phase Equilibria Research, Victor, Idaho 83455
Get access

Extract

Single crystals of barium samarium titanium oxide Ba6−3xSm8+2xTi18O54 (x = 0.27) have been synthesized and studied using x-ray diffraction. Superstructure reflections, which cause a doubling of the cell along the short axis, were taken into account and the refinement was conducted in the orthorhombic space group Pnma. Unit cell parameters from single crystal x-ray diffraction were a = 22.289(1), b = 7.642(1), and c = 12.133(1) Å. Refinement on F resulted in R1 = 5.37% for 1410 Fo > 4σ with the thermal parameters of the Sm and Ba atoms refined anisotropically and the thermal parameters of the Ti and O atoms refined isotropically. The structure is made up of a network of corner sharing TiO6−2 octahedra creating rhombic (perovskite-like) and pentagonal channels. The two pentagonal channels are fully occupied by Ba atoms. The refinement suggests that one rhombic channel is fully occupied by Sm atoms (Sm3/Sm4), one rhombic channel is partially occupied by Sm atoms (100% Sm1/86.25% Sm5), and one rhombic channel is shared by BaySm atoms (59.25% Ba3/40.75% Sm2), resulting in a formula of Ba10.38Sm17.08Ti36O108 with Z = 1. The above site occupancies differ from the site occupancies previously reported in the literature for refinements conducted with the short axis approximately equal to 3.8 Å.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Kolar, D., Gaberšček, S., Stadler, Z., and Suvorov, D., Ferroelectrics 27, 269272 (1980).CrossRefGoogle Scholar
2.Wakino, K., Minai, K., and Tamura, H., J. Am. Ceram. Soc. 67, 278281 (1984).CrossRefGoogle Scholar
3.Bolton, R. L., Dissertation, Univ. Illinois (1968).Google Scholar
4.Kolar, D., Stadler, Z., Gaberšček, S., and Suvorov, D., Ber. Dt. Keram. Ges. 55, 346348 (1978).Google Scholar
5.Kolar, D., Gaberšček, S., Volavsek, B., Parker, H. S., and Roth, R. S., J. Solid State Chem. 38, 158164 (1981).CrossRefGoogle Scholar
6.Gens, A. M., Varfolomeev, M. B., Kostomarov, V. S., and Korovin, S. S., Russ. J. Inorg. Chem. (Engl. Trans.) 26, 482484 (1981).Google Scholar
7.Matveeva, R. G., Varfolomeev, M. B., and Il'yushchenko, L. S., Russ. J. Inorg. Chem. (Engl. Trans.) 29, 1719 (1984).Google Scholar
8.Gaberšček, S., Dissertation, Univ. Ljubljana (1991).Google Scholar
9.Jaakola, T., Uusimäki, A., Rautioaho, R., and Leppävuori, S., J. Am. Ceram. Soc. 69, c234235 (1986).CrossRefGoogle Scholar
10.Beech, F., Davis, K., Roth, R. S., Santoro, A., Soubeyroux, J. L., and Zucchi, M., Abstract 251-B-87, Ann. Meeting Am. Ceram. Soc., Pittsburgh, PA, April 26–30 (1987).Google Scholar
11.Kolar, D., Gaberšček, S., and Suvorov, D., in Third Euro-Ceramics, Properties of Ceramics, edited by Duran, P. and Fernandez, J. F. (Faenza Editrice Iberica, Spain, 1993), Vol. 2, p. 229.Google Scholar
12.Varfolomeev, M. B., Mironov, A. S., Kostmarov, V. S., Golubstova, L. A., and Zolotova, T. A., Russ. J. Inorg. Chem. (Engl. Trans.) 33, 607608 (1988).Google Scholar
13.Roth, R. S., Beech, F., Santoro, A., Davis, K., Soubeyroux, J. L., and Zucchi, M., Abstract 07.9-9, Fourteenth International Congress of Crystallography, Perth, Australia, August 12–20 (1987).Google Scholar
14.Negas, T., Yeager, G., Bell, S., and Amren, R., in National Institute of Standards and Technology Special Publication 804, Chemistry of Electronics Ceramic Materials, edited by Davies, P. K. and Roth, R. S., Proceedings of the International Conference held in Jackson, WY, August 17–22, 1990.Google Scholar
15.Negas, T. and Davies, P. K., in Materials and Processes for Wireless Communications, Ceramic Transactions, edited by Negas, T. and Ling, H. (The American Ceramic Society, Westerville, OH, 1995), Vol. 53, p. 179.Google Scholar
16.Mercurio, J. P., Manier, M., and Frit, B., Ferroelectrics 127, 3540 (1992).CrossRefGoogle Scholar
17.Valant, M., Suvorov, D., and Kolar, D., Jpn. J. Appl. Phys. 35, 144150 (1996).Google Scholar
18. Fig. 9523, Phase Diagrams for Ceramists, edited by Roth, R. S. (1995).Google Scholar
19.Takahashi, J., Ikegami, T., and Kageyama, K., J. Am. Ceram. Soc. 74, 18681872 (1987).Google Scholar
20.Takahashi, J., Ikegami, T., and Kageyama, K., J. Am. Ceram. Soc. 74, 18731879 (1987).Google Scholar
21.Kutty, T. R. N. and Murugaraj, P., J. Mater. Sci. 22, 36523664 (1987).CrossRefGoogle Scholar
22.Guha, J. P., J. Am. Ceram. Soc. 74, 878880 (1991).CrossRefGoogle Scholar
23.Ohsato, H., Nishigaki, S., and Okuda, T., Jpn. J. Appl. Phys. 31, 31363138 (1992).Google Scholar
24.Fukuda, K., Kitoh, R., and Awai, I., J. Mater. Res. 10, 312319 (1995).CrossRefGoogle Scholar
25.Azough, F., Setasuwon, P., and Freer, R., in Materials and Processes for Wireless Communications, Ceramic Transactions, edited by Negas, T. and Ling, H. (The American Ceramic Society, Westerville, OH, 1995), Vol. 53, p. 215.Google Scholar
26.Azough, F., Champness, P. E., and Freer, R., J. Appl. Crystallogr. 28, 577581 (1995).CrossRefGoogle Scholar
27.Main, P., Fiske, S., Hull, S. E., Lessinger, L., Germain, G., Declercq, J. P., and Woolfson, M. M., MULTAN11/82 A System of Computer Programs for the Automatic Solution of Crystal Structures from X-Ray Diffraction Data (Univ. York, England, and Univ. Louvain, Belgium, 1982).Google Scholar
28.Sheldrick, G. M., Acta Crystallogr. A46, 467473 (1990).Google Scholar
29.Sheldrick, G. M. and Gould, R. O., Acta Crystallogr. B51, 423431 (1995).CrossRefGoogle Scholar
30.Sheldrick, G. M., SHELXL-93. Program for Crystal Structure Refinement (Univ. of Göttingen, Germany, 1993).Google Scholar
31.Brese, N. E. and O'Keeffe, M., Acta Crystallogr. B47, 192197 (1991).Google Scholar
32.Brown, I. D. and Altermatt, D.. Acta Crystallogr. B41, 244247 (1985).CrossRefGoogle Scholar
33.Burnett, M. N. and Johnson, C. K., ORTEP-III, Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, TN (1996).Google Scholar