Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-05T04:16:10.688Z Has data issue: false hasContentIssue false

Structural properties of molecular beam epitaxy grown Ni/Pt superlattices

Published online by Cambridge University Press:  31 January 2011

W. Staiger
Affiliation:
Groupe d'Etudes des Matériaux Métalliques, Institut de Physique et Chimie des Matériaux, UMR 0046 CNRS–Université Louis Pasteur, 23, rue du Loess, F-67037 Strasbourg, France
A. Michel
Affiliation:
Groupe d'Etudes des Matériaux Métalliques, Institut de Physique et Chimie des Matériaux, UMR 0046 CNRS–Université Louis Pasteur, 23, rue du Loess, F-67037 Strasbourg, France
V. Pierron-Bohnes
Affiliation:
Groupe d'Etudes des Matériaux Métalliques, Institut de Physique et Chimie des Matériaux, UMR 0046 CNRS–Université Louis Pasteur, 23, rue du Loess, F-67037 Strasbourg, France
N. Hermann
Affiliation:
Groupe d'Etudes des Matériaux Métalliques, Institut de Physique et Chimie des Matériaux, UMR 0046 CNRS–Université Louis Pasteur, 23, rue du Loess, F-67037 Strasbourg, France
M. C. Cadeville
Affiliation:
Groupe d'Etudes des Matériaux Métalliques, Institut de Physique et Chimie des Matériaux, UMR 0046 CNRS–Université Louis Pasteur, 23, rue du Loess, F-67037 Strasbourg, France
Get access

Abstract

We find that the [Ni3.2nmPt1.6nm] × 15 and [Ni3.2nmPt0.8nm] × 15 multilayers are semicoherent and display a columnar morphology. From both the period of the moir’e fringes and the positions of the diffraction peaks in electronic (plan-view and crosssection geometries) and x-ray diffraction patterns, one deduces that the nickel is relaxed (at least in the error bars of all our measurements), whereas the platinum remains slightly strained (≈−1%). The interfaces are sharp; no intermixing takes place giving rise to neat contrasts in transmission electron microscopy (TEM) and to high intensities of the superlattice peaks in the growth direction in both diffraction techniques. The relaxation of the interfacial misfit occurs partially through misfit dislocations, partially through the strain of platinum. A quasiperiodic twinning occurs at the interfaces, the stacking fault which forms the twin being the most often located at the interface Pt/Ni, i.e., when a Pt layer begins to grow on the Ni layer. The simulation of the θ/2θ superlattice peak intensities takes into account the columnar microstructure. It shows that the roughness is predominantly at medium scale with a fluctuation of about 12.5% for Ni layers and negligible for Pt layers.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Krishnan, R., Lassri, H., Porte, M., Tessier, M., and Renaudin, P., Appl. Phys. Lett. 59, 3649 (1991).CrossRefGoogle Scholar
2.Krishnan, R., Lassri, H., Prasad, S., Porte, M., and Tessier, M., J. Appl. Phys. 73, 6433 (1993).CrossRefGoogle Scholar
3.Sousa, J. B., Almeida, B., Pinto, R. P., Braga, M. E., Krishnan, R., Lassri, H., Porte, M., and Tessier, M., Proc. Düsseldorf, Sept. 1994.Google Scholar
4.Ounadjela, K., Vennegues, P., Henry, Y., Michel, A., Pierron-Bohnes, V., and Arabski, K., Phys. Rev. B 49, 8561 (1994).CrossRefGoogle Scholar
5.Takahashi, H., Fukatsu, S., Tsunashima, S., and Uchiyama, S., J. Magn. Magn. Mater. 104–107, 1831 (1992).CrossRefGoogle Scholar
6.De Veirman, A. E. M., Hakkens, F. J. E., and Dierks, A. G., Ultramicroscopy 51, 306 (1993).CrossRefGoogle Scholar
7.Hakkens, F. J. E., De Veirman, A. E. M., Coene, W., and den Broeder, F. J. A., J. Mater. Res. 8, 1019 (1993).CrossRefGoogle Scholar
8.Pashley, D. W. and Stowell, M. J., Philos. Mag. 8, 1605 (1963).CrossRefGoogle Scholar
9.Renard, D. and Nihoul, G., Philos. Mag. 55, 75 (1987).CrossRefGoogle Scholar
10.van der Sluis, P., J. Appl. Crystallogr. 27, 1015 (1994).CrossRefGoogle Scholar
11.Fujii, Y., in Metallic Superlattices, edited by Shinja, T. and Takada, T. (Elsevier, Amsterdam, New York, 1987), pp. 3375.Google Scholar
12.Fullerton, E. E., Schuller, I. K., Vanderstraeten, H., and Bruynseraede, Y., Phys. Rev. B 45, 9292 (1992).CrossRefGoogle Scholar
13.Cottrel, A. H., in The Mechanical Properties of Matter (John Wiley and Sons, New York, London, Sydney, 1964), p. 5.Google Scholar
14.Pan, G., Michel, A., Pierron-Bohnes, V., Vennegues, P., and Cadeville, M. C., J. Mater. Res. 10, 1539 (1995).CrossRefGoogle Scholar
15.Greaves, S. J., Petford-Long, A. K., Kim, Y. H., Pollard, R. J., Grundy, P. J., and Jakubovics, J. P., J. Magn. Magn. Mater. 113, 63 (1992).CrossRefGoogle Scholar
16.Srolovitz, D. J., Mazor, A., and Bukiet, B. G., J. Vac. Sci. Technol. A 6, 2371 (1988).CrossRefGoogle Scholar
17.Bales, G. S. and Zangwill, A., J. Vac. Sci. Technol. A 9, 145 (1991).CrossRefGoogle Scholar
18.Bauer, E. and van der Merwe, J. W., Phys. Rev. B 33, 3657 (1986).CrossRefGoogle Scholar
19.Mezey, L. Z. and Giber, J., Jpn. J. Appl. Phys. 21, 1569 (1982).CrossRefGoogle Scholar
20.Carter, C. B. and Holmes, S. M., Philos. Mag. 35, 1161 (1977).CrossRefGoogle Scholar
21.Dillamore, I. L., Smallman, R. E., and Roberts, W. T., Philos. Mag. 9, 517 (1964).CrossRefGoogle Scholar