Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-05T00:10:22.006Z Has data issue: false hasContentIssue false

Structural studies of HgCdTe grown by MOCVD on lattice-matched substrates

Published online by Cambridge University Press:  31 January 2011

M. J. Bevan
Affiliation:
Westinghouse Science & Technology Center, Pittsburgh, Pennsylvania 15235
J. Greggi
Affiliation:
Westinghouse Science & Technology Center, Pittsburgh, Pennsylvania 15235
N. J. Doyle
Affiliation:
Westinghouse Science & Technology Center, Pittsburgh, Pennsylvania 15235
Get access

Abstract

Improved structural quality Hg1−xCdxTe epitaxial films have been grown by metal organic chemical vapor deposition (MOCVD) using the interdiffused multilayer process (IMP) on lattice-matched CdZnTe substrates at temperatures above 400°C with diethyltelluride. Double-crystal rocking curve data with values as low as 25 arcsec correlated with cross-sectional transmission electron micrographs. The process of growing alternate layers of HgTe/CdTe for improved compositional uniformity, and the inherent mismatch, was not detrimental to the structural quality, which was limited by that of the substrate.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Irvine, S. J. C. and Mullin, J. B., J. Cryst. Growth 55, 107 (1981).Google Scholar
2Hoke, W. E. and Traczewski, R., J. Appl. Phys. 54, 5087 (1983).CrossRefGoogle Scholar
3Ghandhi, S. K. and Bhat, I., Appl. Phys. Lett. 44, 779 (1984).Google Scholar
4Schmit, J. L., J. Vac. Sci. Technol. A3 (1), 89 (1985).CrossRefGoogle Scholar
5Edwall, D. D., Gertner, E. R., and Bubulac, L. O., J. Cryst. Growth 86, 240 (1988).CrossRefGoogle Scholar
6Tunnicliffe, J., Irvine, S. J. C., Dosser, O. D., and Mullin, J. B., J. Cryst. Growth 68, 245 (1984).Google Scholar
7Bevan, M. J. and Woodhouse, K. T., J. Cryst. Growth 68, 254 (1984).Google Scholar
8Whiffin, P. A. C., Easton, B. C., Capper, P., and Maxey, C. D., J. Cryst. Growth 79, 935 (1986).Google Scholar
9Hyliands, M. J., Thompson, J., Bevan, M. J., Woodhouse, K. T., and Vincent, V., J. Vac. Sci. Technol. A4 (4), 2217 (1986).Google Scholar
10Raccah, P. M., Zhang, Z., Garland, J. W., Chu, A. H. M., Bevan, M. J., Thompson, J., and Woodhouse, K. T., J. Vac. Sci. Technol. A4 (4), 2226 (1986).Google Scholar
11Wood, R. A., Schmit, J. L., Chung, H. K., Magee, T. J., and Woolhouse, G. R., J. Vac. Sci Technol. A3 (1), 93 (1985).Google Scholar
12Pelliciari, B., Destefanis, G. L., and DiCioccio, L., J. Vac. Sci. Technol. A7, 314 (1989).Google Scholar
13Ghandhi, S. K., Bhat, I. B., and Fardi, H., Appl. Phys. Lett. 52, 392 (1988).Google Scholar
14Dean, B. and Johnson, C., Extended Abstracts of 3rd Int. Conf. on II–VI Compounds, Monterey, CA, 1987.Google Scholar
15Takei, W. J. and Doyle, N. J. (Proc. Mater. Res. Soc, Symp.) (Materials Research Society, Pittsburgh, PA, 1987), Vol. 90, p. 189.Google Scholar
16Million, A., DiCioccio, L., Galliard, J. P., and Piaguet, J., J. Vac. Sci. Technol. A6 (4), 2813 (1988).Google Scholar