Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-14T19:13:55.907Z Has data issue: false hasContentIssue false

A study of the submicron indent-induced plastic deformation

Published online by Cambridge University Press:  31 January 2011

C. F. Robertson
Affiliation:
CEA Saclay, DTA/SRMP, 91191 Gif sur Yvette, France
M. C. Fivel
Affiliation:
GPM2, CNRS-INPG, BP46, 38402 Saint Martin d'Hères, France
Get access

Abstract

A new method has been developed to achieve a better understanding of submicron indent-induced plastic deformation. This method combines numerical modeling and various experimental data and techniques. Three-dimensional discrete dislocation dynamics simulation and the finite element method (FEM) were used to model the experimental conditions associated with nanoindentation testing in fcc crystals. Transmission electron microscopy (TEM) observations of the indent-induced plastic volume and analysis of the experimental loading curve help in defining a complete set of dislocation nucleation rules, including the shape of the nucleated loops and the corresponding macroscopic loading. A validation of the model is performed through direct comparisons between a simulation and experiments for a nanoindentation test on a [001] copper single crystal up to 50 nm deep.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
2.Swain, M.V. and Menčik, J., Thin Solid Films 253, 204211 (1994).CrossRefGoogle Scholar
3.Field, S. and Swain, M.V., J. Mater. Res. 10, 101 (1995).CrossRefGoogle Scholar
4.Hainsworth, S.V., Chandler, H. W., and Page, T.F., J. Mater. Res. 11, 19871995 (1996).CrossRefGoogle Scholar
5.Tsui, T. Y., Oliver, W. C., and Pharr, G. M., J. Mater. Res. 11, 752759 (1996).CrossRefGoogle Scholar
6.Bolshakov, A., Oliver, W. C., and Pharr, G.M., J. Mater. Res. 11, 760 (1996).CrossRefGoogle Scholar
7.Gerberich, W.W., Venkataraman, S. K., Huang, H., Harvey, S. E., and Kohlstedt, D. L., Acta Metall. Mater. 43 (4), 15691576 (1995).CrossRefGoogle Scholar
8.Zielinski, W., Huang, H., Venkataraman, S., and Gerberich, W. W., Philos. Mag. A 72 (5), 12211237 (1995).CrossRefGoogle Scholar
9.Zielinski, W., Huang, H., and Gerberich, W.W., J. Mater. Res. 8, 1300 (1993).CrossRefGoogle Scholar
10.Robertson, C., Poissonnet, S., and Boulanger, L., J. Mater. Res. 13, 2123 (1998).CrossRefGoogle Scholar
11.Michalske, T.A. and Houston, J. E., Acta Mater. 46 (2), 391396 (1998).CrossRefGoogle Scholar
12.Kelchner, C. L., Plimpton, S. J., and Hamilton, J. C., unpublished.Google Scholar
13.Fivel, M.C., Robertson, C. F., Canova, G.R., and Boulanger, L., Acta Mater. 46 (17), 61836194 (1998).CrossRefGoogle Scholar
14.Kubin, L.P., Canova, G. R., Condat, M., Devincre, B., Pontikis, V., and Bréchet, Y., Solid State Phenom. 23&24, 455 (1992).CrossRefGoogle Scholar
15.Kubin, L.P. and Canova, G. R., Scripta Metall. Mater. 27, 957 (1992).CrossRefGoogle Scholar
16.Fivel, M., Verdier, M., and Canova, G., Mater. Sci. Eng. A 234–236, 923926 (1997).CrossRefGoogle Scholar
17.Fivel, M., Doctoral thesis, INP Grenoble, Laboratoire GPM2, 1998.Google Scholar
18.Bahr, D.F., Kramer, D.E., and Gerberich, W.W., Acta Mater. 46 (10), 36053617 (1998).CrossRefGoogle Scholar
19.Mann, A.B. and Pethica, J. B., Appl. Phys. Lett. 69 (7), 907909 (1996).CrossRefGoogle Scholar
20.Lépinoux, J. and Kubin, L.P., Scripta Metall. 21 (6), 833838 (1987).CrossRefGoogle Scholar
21.Ghoniem, N.M. and Amodeo, R.J., Solid State Phenom. 3&4, 377388 (1988).Google Scholar
22.Polonsky, I. A. and Keer, L.M., Proc. R. Soc. London A 452 (1953), 21732194 (1996).Google Scholar
23.Seitz, F., Adv. Phys. 1, 43 (1952).CrossRefGoogle Scholar
24.Friedel, J., Dislocations (Pergamon Press, New York, Oxford, 1964).Google Scholar
25.Hirth, J. P. and Lothe, J., Theory of Dislocations, 2nd ed. (John Wiley and Sons, New York, 1982).Google Scholar
26.Tadmor, E., Ortiz, M., and Phillips, R., Philos. Mag. A 73 (6), 15281536 (1996).CrossRefGoogle Scholar
27.Hertz, H., J. reine Angewandte Mathematik 92, 156 (1882).CrossRefGoogle Scholar
28.De Wit, R., Phys. Status Solidi 20, 575580 (1967).CrossRefGoogle Scholar
29.Yasuda, K., Shinohara, K., Yamada, M., Kutsuhara, M., and Kinoshita, C., J. Nucl. Mater. 187, 109116 (1992).CrossRefGoogle Scholar
30.Johnson, K.L., Contact Mechanics (Cambridge University Press, 1985).CrossRefGoogle Scholar
31.Hill, R., The Mathematical Theory of Plasticity (Oxford University Press, 1950).Google Scholar
32.Tabor, D., Philos. Mag. 74 (5), 12071212 (1996).CrossRefGoogle Scholar