Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-28T16:02:35.041Z Has data issue: false hasContentIssue false

Superhard B–C–N materials synthesized in nanostructured bulks

Published online by Cambridge University Press:  31 January 2011

Y. Zhao*
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico, 87545
D. W. He
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico, 87545
L. L. Daemen
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico, 87545
T. D. Shen
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico, 87545
R. B. Schwarz
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico, 87545
Y. Zhu
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico, 87545
D. L. Bish
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico, 87545
J. Huang
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545 and Department of Physics, Boston College, Massachusetts 02467
J. Zhang
Affiliation:
Mineral Physics Institute, State University of New York, Stony Brook, New York 11794
G. Shen
Affiliation:
Consortium for Advanced Radiation Sources, University of Chicago, Chicago, Illinois 60637
J. Qian
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545, and Department of Physics & Astronomy, Texas Christian University, Fort Worth, Texas 76129
T. W. Zerda
Affiliation:
Department of Physics & Astronomy, Texas Christian University, Fort Worth, Texas 76129
*
a)Address all correspondence to this author.yzhao@lanl.gov
Get access

Abstract

We report here the high-pressure synthesis of well-sintered millimeter-sized bulks of superhard BC2N and BC4N materials in the form of a nanocrystalline composite with diamond-like amorphous carbon grain boundaries. The nanostructured superhard B–C–N material bulks were synthesized under high P–T conditions from amorphous phases of the ball-milled molar mixtures. The synthetic B–C–N samples were characterized by synchrotron x-ray diffraction, high-resolution transmission electron microscope, electron energy-loss spectra, and indentation hardness measurements. These new high-pressure phases of B–C–N compound have extreme hardnesses, second only to diamond. Comparative studies of the high PT synthetic products of BC2N, BC4N, and segregated phases of diamond + cBN composite confirm the existence of the single B–C–N ternary phases.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Sun, H., Jhi, S., Roundy, D., Cohen, M.L., and Louie, S.G., Phys. Rev. B 64, 094108 (2001).CrossRefGoogle Scholar
2.Tateyama, Y., Ogitsu, T., Kusakabe, K., and Tsuneyuki, S., Phys. Rev. B 55, 10161 (1997).CrossRefGoogle Scholar
3.Hall, H.T. and Compton, L.A., Inorg. Chem. 4, 1213 (1965).CrossRefGoogle Scholar
4.Wentorf, R.H., DeVries, R.C., and Bundy, F.P., Science 208, 873 (1980).CrossRefGoogle Scholar
5.Liu, A.Y. and Cohen, M.L., Science 245, 841 (1989).CrossRefGoogle Scholar
6.Teter, D.M. and Hemley, R.J., Science 271, 53 (1996).CrossRefGoogle Scholar
7.Hubert, H., Devouard, B., Garvie, L.A.J., O'Keeffe, M., Buseck, P.R., Petuskey, W.T., and McMillan, P.F., Nature 391, 376 (1998).CrossRefGoogle Scholar
8.He, D., Akaishi, M., Scott, B.L., and Zhao, Y., J. Mater. Res. 17, 284 (2002).CrossRefGoogle Scholar
9.Bundy, F.P., Hall, H.T., Strong, H.M., and Wentorf, R.H. Jr., Nature 176, 51 (1955).CrossRefGoogle Scholar
10.Wentorf, R.H. Jr., J. Chem. Phys. 26, 956 (1957).CrossRefGoogle Scholar
11.Veprek, S., in Handbook of Ceramic Hard Materials, edited by Riedel, R. (Wiley-VCH Verlag GmbH, Weinheim, Germany, 2000), pp. 104139.CrossRefGoogle Scholar
12.Badzian, A.R., Mater. Res. Bull. 16, 1385 (1981).CrossRefGoogle Scholar
13.Nakano, S., Akaishi, M., Sasaki, T., and Yamaoka, S., Chem. Mater. 6, 2246 (1994).CrossRefGoogle Scholar
14.Knittle, E., Kaner, R.B., Jeanloz, R., and Cohen, M.L., Phvs. Rev. B 51, 12149 (1995).CrossRefGoogle Scholar
15.Komatsu, T., Samedima, M., Awano, T., Kakadate, Y., and Fujiwara, S.J., Mater. Process. Technol. 85, 69 (1999).CrossRefGoogle Scholar
16.Solozhenko, V.L., Andrault, D., Fiquet, G., Mezouar, M., and Rubie, D.C., Appl. Phys. Lett. 78, 1385 (2001).CrossRefGoogle Scholar
17.Huang, J., Zhu, Y.T., and Mori, H., J. Mater. Res. 16, 1178 (2001).CrossRefGoogle Scholar
18.Veprek, S., J. Vac. Sci. Technol., A 17, 2401 (1999).CrossRefGoogle Scholar
19.Hertzberg, R.W., Deformation and Fracture Mechanics of Engineering Materials (Wiley, New York, 1989).Google Scholar
20.Kelly, A. and MacMillan, N.H., Strong Solids (Clarendon, Oxford, U.K., 1986).Google Scholar
21.Ekimov, E.A., Gavriliuk, A.G., Palosz, Z., Gierlotka, S., Dluzewski, P., Tatianin, E., Kluged, Y., Naletov, A.M., and Presz, A., Appl. Phys. Lett. 77, 954 (2000).CrossRefGoogle Scholar
22.Utsumi, W., Nakano, S., Kimoto, K., Okada, T., Isshiki, M., Taniguchi, T., Funakoshi, K., Akaishi, M., and Shimomura, O., Proceedings of AIRAPT-18, Beijing, China, 2001 (2001), p. 186.Google Scholar
23.Nakano, S., Akaishi, M., Sasaki, T., and Yamaoka, S., Chem. Mater. 6, 2246 (1994).CrossRefGoogle Scholar
24.Mattesini, M. and Matar, S.F., Comput. Mater. Sci. 20, 107 (2001).CrossRefGoogle Scholar
25.Vegard, L., Z. Phys. 5, 17 (1921).CrossRefGoogle Scholar
26.Redlich, Ph., Loeffler, J., P.Ajayan, M., Bill, J., Aldinger, F., and Rühle, M., Chem. Phys. Lett. 260, 465 (1996).CrossRefGoogle Scholar
27.Wibbelt, M., Kohl, H., and Kohler-Redlich, Ph., Phys. Rev. B 59, 11739 (1999).CrossRefGoogle Scholar
28.Garvie, L.A.J., Hubert, H., Petuskey, W.T., McMillan, P.F., and Buseck, P.R., J. Solid State Chem. 133, 365 (1997).CrossRefGoogle Scholar
29.Lannin, J.S., Merkulov, V.I., Munro, C.H., Asher, S.A., Veerasamy, V.S., and Milne, W.I., Phys. Rev. Lett. 78, 4869 (1997).Google Scholar
30.Siegal, M.P., Tallant, D.R., Martinez-Miranda, L.J., Barbour, J.C., Simpson, R.L., and Overmyer, D.L., Phys. Rev. B 61, 10451 (2000).CrossRefGoogle Scholar
31.Schiøtz, J., Tolla, F.D. Di, and Jacobsen, K.W., Nature 391, 561 (1998).CrossRefGoogle Scholar
32.He, D., Zhao, Q., Wang, W.H., Che, R.Z., Liu, J., Lou, X.J., and Wang, W.K., J. Non-Cryst. Solids 297, 84 (2002).CrossRefGoogle Scholar
33.Taniguchi, T., Ahaishi, M., and Yamaoka, S., J. Mater. Res. 14, 162 (1999).CrossRefGoogle Scholar