Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-15T01:55:08.484Z Has data issue: false hasContentIssue false

Surface fractal dimensions of some industrial minerals from gas-phase adsorption isotherms

Published online by Cambridge University Press:  31 January 2011

Yves Lefebvre
Affiliation:
Laboratoire de réactivité de surface et structure, Université Pierre et Marie Curie–Paris VI, Tour 54-55, 2e étage, 75014 Paris, France
Serge Lacelle
Affiliation:
Département de chimie, Université de Sherbrooke, Sherbrooke (Québec), Canada J1K 2R1
Carmel Jolicoeur*
Affiliation:
Département de chimie, Université de Sherbrooke, Sherbrooke (Québec), Canada J1K 2R1
*
a)Address correspondence to this author.
Get access

Abstract

A high precision gravimetric method was used to investigate the adsorption of nitrogen (N2) and carbon tetrachloride (CCl4), respectively, at 77 and 298 K, onto various industrial minerals. The solids investigated include silica isomorphs, blast furnace slags, an Y-zeolite, and several naturally occurring fibrous minerals. The adsorption isotherms were analyzed to derive surface areas, BET constants (C), and surface fractal parameters (D). The latter were obtained through an approach recently suggested by Avnir and Jaroniec,1 using multilayer adsorption data; D values obtained for the various gas-solid systems investigated cover the range 2.1–3.0. A systematic comparison between D values inferred from N2 and CCl4 adsorption data shows that the CCl4 molecule probes the surface roughness in a more discriminate fashion than N2. In most cases, the differences between D(N2) and D(CCl4) appear to reflect changes due to sample preparation more than intrinsic differences amongst the various solids.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Avnir, D. and Jaroniec, M., Langmuir 5, 1431 (1989).Google Scholar
2.Avnir, D., Farin, D., and Pfeifer, P., Nature 308, 261 (1984).Google Scholar
3.The Fractal Approach to Heterogeneous Chemistry, edited by Avnir, D. (John Wiley and Sons, New York, 1989).Google Scholar
4.Avnir, D., Farin, D., and Pfeifer, P., J. Chem. Phys. 79, 3566 (1983).Google Scholar
5.McClellan, A. L. and Harnsberger, H. F., J. Coll. Int. Sci. 23, 577 (1967).Google Scholar
6.Pfeifer, P., Wu, Y. J., Cole, M. W., and Krim, J., Phys. Rev. Lett. 62, 1997 (1989).CrossRefGoogle Scholar
7.Yin, Y., Langmuir 7, 216 (1991).Google Scholar
8.Lefebvre, Y. and Joiicoeur, C., in Her, R. K. Memorial Symposium on the Colloid Chemistry of Silica, in Colloid and Surfaces (in press).Google Scholar
9.Nesbar, B. and Carette, G. G., Cement Concrete and Aggregates 8, 42 (1986).Google Scholar
10.Jolicoeur, C., Roberge, P., and Fortier, J. L., Can. J. Chem. 59, 1140 (1981).Google Scholar
11.Van Voorhis, J. J., Craig, R. G., and Bartell, F. E., J. Phys. Chem. 61, 1513 (1957).Google Scholar
12.Avnir, D. and Farin, D., New. J. Chem. 14, 197 (1990).Google Scholar
13.Pierce, C., J. Phys. Chem. 63, 1076 (1959).Google Scholar
14.Halsey, G., J. Chem. Phys. 16 (10), 931 (1948).Google Scholar
15.Pfeifer, P., in Chemistry and Physics of Solid Surfaces, edited by Vanselow, R. (Springer-Verlag, Berlin, 1988), Vol. VII, p. 283.Google Scholar
16.Yada, K., Acta Crystallogr. 23, 704 (1967).CrossRefGoogle Scholar
17.Speil, S. and Leineweber, J. P., Environ. Res. 2 (3), 166 (1969).CrossRefGoogle Scholar