Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-15T12:03:21.172Z Has data issue: false hasContentIssue false

Surface modification of the biodegradable cardiovascular stent material Mg–Zn–Y–Nd alloy via conjugating REDV peptide for better endothelialization

Published online by Cambridge University Press:  06 November 2018

Li Chen
Affiliation:
School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
Jingan Li*
Affiliation:
School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
Shuo Wang
Affiliation:
School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
Shijie Zhu
Affiliation:
School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
Chao Zhu
Affiliation:
School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
Boyuan Zheng
Affiliation:
School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
Ge Yang
Affiliation:
School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
Shaokang Guan*
Affiliation:
School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
*
a)Address all correspondence to these authors. e-mail: lijingan@zzu.edu.cn
Get access

Abstract

Magnesium is a biodegradable material that has potential application in cardiovascular stent development: its excellent mechanical properties and blood compatibility make it highly useful in interventional therapy. Nevertheless, the following shortcomings restrict its further application: antihyperplasia function and promoting surface endothelialization. In this study, we immobilized a specific link peptide of endothelial cells, Arg-Glu-Asp-Val (REDV), onto polydopamine (PDA)-deposited Mg–Zn–Y–Nd alloy surface via covalent reaction to improve the growth of the endothelial cells. The PDA/REDV coating with optimized parameters maintained the good blood compatibility of the Mg–Zn–Y–Nd alloy at the biomimetic speed of the blood flow and significantly inhibited the growth of the vascular smooth muscle cells and macrophage attachment/activation, which indicated its better functions in antihyperplasia and anti-inflammation. In particular, the PDA/REDV coating not only showed consistent results in promoting the attachment of endothelial cells as reported elsewhere, but also displayed the ability of enhancing the viability of endothelial cells (or inhibiting apoptosis), suggesting its pro-endothelialized function through different pathways. In summary, this PDA/REDV coating addressed the above-mentioned shortcomings of the magnesium alloy, which may promise its wider application.

Type
Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Sheng, Z.Z., Liu, X., Min, L.L., Wang, H.L., Liu, W., Wang, M., Huang, L.Z., Wu, F., and Hou, X.: Bioinspired approaches for medical devices. Chin. Chem. Lett. 28, 11311134 (2017).CrossRefGoogle Scholar
Ramcharitar, S. and Serruys, P.W.: Fully biodegradable coronary stents. Am. J. Cardiovasc. Drugs 8, 305314 (2008).CrossRefGoogle ScholarPubMed
Serruys, P.W., Kutryk, M.J.B., and Ong, A.T.L.: Coronary-artery stents. N. Engl. J. Med. 354, 483495 (2006).CrossRefGoogle ScholarPubMed
Im, S.H., Jung, Y., and Kim, S.H.: Current status and future direction of biodegradable metallic and polymeric vascular scaffolds for next-generation stents. Acta Biomater. 60, 322 (2017).CrossRefGoogle ScholarPubMed
Zheng, Y.F. and Yang, H.T.: Research progress in biodegradable metals for stent application. Acta Metall. Sin. 53, 12271237 (2017).Google Scholar
Wacker, W.E.C. and Vallee, B.L.: Magnesium metabolism. N. Engl. J. Med. 259, 431438 (1958).CrossRefGoogle ScholarPubMed
Lu, P., Fan, H.N., Liu, Y., Cao, L., Wu, X.F., and Xu, X.H.: Controllable biodegradability, drug release behavior and hemocompatibility of PTX-eluting magnesium stents. Colloids Surf., B 83, 2328 (2011).CrossRefGoogle ScholarPubMed
Galvin, E., Cummins, C., Yoshihara, S., Mac Donald, B.J., and Lally, C.: Plastic strains during stent deployment have a critical influence on the rate of corrosion in absorbable magnesium stents. Med. Biol. Eng. Comput. 55, 12611275 (2017).CrossRefGoogle ScholarPubMed
Li, N. and Zheng, Y.F.: Novel magnesium alloys developed for biomedical application: A review. J. Mater. Sci. Technol. 29, 489502 (2013).CrossRefGoogle Scholar
Wang, J., Jang, Y., Wan, G.J., Giridharan, V., Song, G.L., Xu, Z.G., Koo, Y., Qi, P.K., Sankar, J., Huang, N., and Yun, Y.: Flow-induced corrosion of absorbable magnesium alloy: In-situ and real-time electrochemical study. Corros. Sci. 104, 277289 (2016).CrossRefGoogle ScholarPubMed
Wu, Q., Zhu, S.J., Wang, L.G., Liu, Q., Yue, G.C., Wang, J., and Guan, S.K.: The microstructure and properties of cyclic extrusion compression treated Mg–Zn–Y–Nd alloy for vascular stent application. J. Mech. Behav. Biomed. Mater. 8, 17 (2012).CrossRefGoogle ScholarPubMed
Shi, Y.J., Zhang, L., Chen, J.H., Zhang, J., Yuan, F., Shen, L., Chen, C.X., Pei, J., Li, Z.H., Tan, J.Y., and Yuan, G.Y.: In vitro and in vivo degradation of rapamycin-eluting Mg–Nd–Zn–Zr alloy stents in porcine coronary arteries. Mater. Sci. Eng., C 80, 16 (2017).CrossRefGoogle ScholarPubMed
Lukyanova, E., Anisimova, N., Martynenko, N., Kiselevsky, M., Dobatkin, S., and Estrin, Y.: Features of in vitro and in vivo behaviour of magnesium alloy WE43. Mater. Lett. 215, 308311 (2018).CrossRefGoogle Scholar
Adekanmbi, I., Mosher, C.Z., Lu, H.H., Riehle, M., Kubba, H., and Tanner, K.E.: Mechanical behaviour of biodegradable AZ31 magnesium alloy after long term in vitro degradation. Mater. Sci. Eng., C 77, 11351144 (2017).CrossRefGoogle ScholarPubMed
Feng, H., Liu, H.P., Cao, H., Yang, Y., Xu, Y.C., and Guan, J.Y.: Effect of precipitates on mechanical and damping properties of Mg–Zn–Y–Nd alloys. Mater. Sci. Eng., A 639, 17 (2015).CrossRefGoogle Scholar
Hou, S.S., Zhang, R.R., Guan, S.K., Ren, C.X., Gao, J.H., Lu, Q.B., and Cui, X.Z.: In vitro corrosion behavior of Ti–O film deposited on fluoride-treated Mg–Zn–Y–Nd alloy. Appl. Surf. Sci. 258, 35713577 (2012).CrossRefGoogle Scholar
Liu, J., Wang, P., Chu, C.C., and Xi, T.F.: Arginine-leucine based poly(ester urea urethane) coating for Mg–Zn–Y–Nd alloy in cardiovascular stent applications. Colloids Surf., B 159, 7888 (2017).CrossRefGoogle ScholarPubMed
Strohbach, A. and Busch, R.: Polymers for cardiovascular stent coatings. Int. J. Polym. Sci., 2015, 782653 (2015).CrossRefGoogle Scholar
Li, J.A., Zhang, K., and Huang, N.: Engineering cardiovascular implant surfaces to create a vascular endothelial growth microenvironment. Biotechnol. J. 12, 1600401 (2017).CrossRefGoogle ScholarPubMed
Li, J.A.: Constructing a spatially ordered composite system on cardiovascular biomaterials surface to create preferable endothelial microenvironment. Basic Clin. Pharmacol. Toxicol. 123, S18S19 (2018).Google Scholar
Zhang, K., Bai, Y.X., Wang, X.F., Li, Q., Guan, F.X., and Li, J.A.: Surface modification of esophageal stent materials by a polyethylenimine layer aiming at anti-cancer function. J. Mater. Sci.: Mater. Med. 28, 125 (2017).Google ScholarPubMed
Su, H., Xue, G.N., Ye, C.R., Wang, Y., Zhao, A.S., Huang, N., and Li, J.A.: The effect of anti-CD133/fucoidan bio-coatings on hemocompatibility and EPC capture. J. Biomater. Sci., Polym. Ed. 28, 20662081 (2017).CrossRefGoogle ScholarPubMed
Wei, Y., Ji, Y., Xiao, L.L., Lin, Q.K., and Ji, J.: Different complex surfaces of polyethyleneglycol (PEG) and REDV ligand to enhance the endothelial cells selectivity over smooth muscle cells. Colloids Surf., B 84, 369378 (2011).CrossRefGoogle ScholarPubMed
Zhang, K., Li, J.A., Wang, J., Liu, T., Wang, X., Chen, J.Y., Huang, N., and Guan, F.X.: Combined REDV polypeptide and heparin onto titanium surface for the hemocompatibility and selectively endothelialization. J. Cell Sci. Ther. 6, 198 (2015).Google Scholar
Bai, Y.X., Zhang, K., Xu, R., Liu, H.T., Guan, F.X., Liu, H.W., Chen, Y., and Li, J.A.: Surface modification of esophageal stent materials by a drug-eluting layer for better anti-restenosis function. Coatings 8, 215 (2018).CrossRefGoogle Scholar
Li, J.A., Wu, F., Zhang, K., He, Z.K., Zou, D., Luo, X., Fan, Y.H., Yang, P., Zhao, A.S., and Huang, N.: Controlling molecular weight of hyaluronic acid conjugated on amine-rich surface: Towards better multifunctional biomaterials for cardiovascular implants. ACS Appl. Mater. Interfaces 9, 3034330358 (2017).CrossRefGoogle Scholar
Zhang, K., Wang, X.F., Guan, F.X., Li, Q., and Li, J.A.: Immobilization of Ophiopogonin D on stainless steel surfaces for improving surface endothelialization. RSC Adv. 6, 113893113898 (2016).CrossRefGoogle Scholar
He, Z.K., Li, J.A., Luo, X., Zou, D., Yang, P., Zhao, A.S., and Huang, N.: Mechanical property of TiO2 nano-tubes surface based on the investigation of residual stress, tensile force and fluid flow shear stress: For potential application of cardiovascular devices. J. Nanosci. Nanotechnol. 18, 798804 (2018).CrossRefGoogle ScholarPubMed
Wu, F., Li, J.A., Zhang, K., He, Z.K., Yang, P., Zou, D., and Huang, N.: Multi-functional coating based on hyaluronic acid and dopamine conjugate for potential application on surface modification of cardiovascular implanted devices. ACS Appl. Mater. Interfaces 8, 109121 (2016).CrossRefGoogle Scholar
Chen, L., Li, J.A., Chang, J.W., Jin, S.B., Wu, D., Yan, H.H., Wang, X.F., and Guan, S.K.: Mg–Zn–Y–Nd coated with citric acid and dopamine by layer-by-layer self-assembly to improve surface biocompatibility. Sci. China: Technol. Sci. 61, 12281237 (2018).CrossRefGoogle Scholar
Li, J.A., Zhang, K., Xu, Y., Chen, J., Yang, P., Zhao, Y.C., Zhao, A.S., and Huang, N.: A novel co-culture models of human vascular endothelial cells and smooth muscle cells by hyaluronic acid micro-pattern on titanium surface. J. Biomed. Mater. Res., Part A 102, 19501960 (2014).CrossRefGoogle Scholar
Li, G.C., Yang, P., Qin, W., Maitz, M.F., Zhou, S., and Huang, N.: The effect of coimmobilizing heparin and fibronectin on titanium on hemocompatibility and endothelialization. Biomaterials 32, 46914703 (2011).CrossRefGoogle ScholarPubMed
Li, J.A., Zhang, K., Wu, J.J., Zhang, L.J., Yang, P., Tu, Q.F., and Huang, N.: Tailoring of the titanium surface by preparing cardiovascular endothelial extracellular matrix layer on the hyaluronic acid micro-pattern for improving biocompatibility. Colloids Surf., B 128, 201210 (2015).CrossRefGoogle ScholarPubMed
Li, J.A., Zhang, K., Chen, H.Q., Liu, T., Yang, P., Zhao, Y.C., and Huang, N.: A novel coating of type IV collagen and hyaluronic acid on stent material-titanium for promoting smooth muscle cells contractile phenotype. Mater. Sci. Eng., C 38, 235243 (2014).CrossRefGoogle ScholarPubMed
Xiang, L.J., Li, J.A., He, Z.K., Wu, J.J., Yang, P., and Huang, N.: Design and construction of TiO2 nanotubes in microarray using two-step anodic oxidation for application of cardiovascular implanted devices. Micro Nano Lett. 10, 287291 (2015).CrossRefGoogle Scholar
Li, J.A., Li, G.C., Zhang, K., Liao, Y.Z., Yang, P., Maitz, M.F., and Huang, N.: Co-culture of vascular endothelial cells and smooth muscle cells by hyaluronic acid micro-pattern on titanium surface. Appl. Surf. Sci. 273, 2431 (2013).CrossRefGoogle Scholar
Li, J.A., Qin, W., Zhang, K., Wu, F., Yang, P., He, Z.K., Zhao, A.S., and Huang, N.: Controlling mesenchymal stem cells differentiate into contractile smooth muscle cells on a TiO2 micro/nano interface: Towards benign pericytes environment for endothelialization. Colloids Surf., B 145, 410419 (2016).CrossRefGoogle ScholarPubMed
Li, L.H., Xu, Y., Zhou, Z., Chen, J., Yang, P., Yang, Y.H., Li, J.A., and Huang, N.: The effects of Cu-doped TiO2 thin films on hyperplasia, inflammation and bacteria infection. Appl. Sci. 5, 10161032 (2015).CrossRefGoogle Scholar
Li, J.A., Zhang, K., Ma, W.Y., Wu, F., Yang, P., He, Z.K., and Huang, N.: Investigation of enhanced hemocompatibility and tissue compatibility associated with multi-functional coating based on hyaluronic acid and type IV collagen. Regener. Biomater. 3, 149157 (2016).CrossRefGoogle ScholarPubMed
Yao, H., Li, J.A., Li, N., Wang, K.B., Li, X., and Wang, J.: Surface modification of cardiovascular stent material-316L SS with estradiol loaded poly(trimethylene carbonate) film for better biocompatibility. Polymers 9, 598 (2017).CrossRefGoogle ScholarPubMed
Feng, Y.S., Zhu, S.J., Wang, L.G., Chang, L., Yan, B.B., Song, X.Z., and Guan, S.K.: Characterization and corrosion property of nano-rod-like HA on fluoride coating supported on Mg–Zn–Ca alloy. Bioact. Mater. 2, 6370 (2017).CrossRefGoogle ScholarPubMed
Xu, Y., Li, J.A., Yao, L.F., Li, L.H., Yang, P., and Huang, N.: Preparation and characterization of Cu-doped TiO2 thin films and effects on platelet adhesion. Surf. Coat. Technol. 261, 436441 (2015).CrossRefGoogle Scholar
Wei, Y., Ji, Y., Xiao, L.L., Lin, Q.K., Xu, J.P., Ren, K.F., and Ji, J.: Surface engineering of cardiovascular stent with endothelial cell selectivity for in vivo re-endothelialisation. Biomaterials 34, 25882599 (2013).CrossRefGoogle ScholarPubMed
Li, J.A., Zhang, K., Yang, P., Wu, L.L., Chen, J.L., Zhao, A.S., Li, G.C., and Huang, N.: Research of smooth muscle cells response to fluid flow shear stress by hyaluronic acid micro-pattern on a titanium surface. Exp. Cell Res. 319, 26632672 (2013).CrossRefGoogle ScholarPubMed
Li, J.A., Zou, D., Zhang, K., Luo, X., Yang, P., Jing, Y.Y., Zhang, Y.X., Cui, G.L., and Huang, N.: Strong multi-functions based on conjugating chondroitin sulfate on amine-rich surface direct vascular cells fate for cardiovascular implanted devices. J. Mater. Chem. B 5, 82998313 (2017).CrossRefGoogle Scholar
Supplementary material: File

Chen et al. supplementary material

Chen et al. supplementary material 1

Download Chen et al. supplementary material(File)
File 565.8 KB