Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-02T17:50:29.305Z Has data issue: false hasContentIssue false

Synthesis of cubic diamond in the graphite-magnesium carbonate and graphite-K2Mg(CO3)2 systems at high pressure of 9–10 GPa region

Published online by Cambridge University Press:  31 January 2011

T. Taniguchi
Affiliation:
National Institute for Research in Inorganic Materials, 1-1 Namiki Tsukuba Ibaraki 305, Japan
D. Dobson
Affiliation:
Department of Geophysical and Geological Science, University College London, Gower Street, London WC1E 6BT, United Kingdom
A. P. Jones
Affiliation:
Department of Geophysical and Geological Science, University College London, Gower Street, London WC1E 6BT, United Kingdom
R. Rabe
Affiliation:
Department of Geophysical and Geological Science, University College London, Gower Street, London WC1E 6BT, United Kingdom
H. J. Milledge
Affiliation:
Department of Geophysical and Geological Science, University College London, Gower Street, London WC1E 6BT, United Kingdom
Get access

Abstract

Cubic diamond was synthesized with two systems, (1) graphite with pure magnesium carbonate (magnesite) and (2) graphite with mixed potassium and magnesium carbonate at pressures and temperatures above 9.5 GPa, 1600 °C and 9 GPa, 1650 °C, respectively. At these conditions (1) the pure magnesite is solid, whereas (2) the mixed carbonate exists as a melt. In this pressure range, graphite seems to be partially transformed into hexagonal diamond. Measured carbon isotope δ13C values for all the materials suggest that the origin of the carbon source to form cubic diamond was the initial graphite powder, and not the carbonates.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Akaishi, M., Kanda, H., and Yamaoka, S., J. Cryst. Growth 104, 578 (1990).CrossRefGoogle Scholar
2. Akaishi, M., Kanda, H., and Yamaoka, S., Jpn. J. Appl. Phys. 29, L1172 (1990).Google Scholar
3. Akaishi, M., Diamond and Related Materials 2, 183 (1993).Google Scholar
4. Kanda, H., Akaishi, M., and Yamaoka, S., J. Cryst. Growth 106, 471 (1990).Google Scholar
5. Yamaoka, S., Akaishi, M., and Kanda, H., J. Cryst. Growth 125, 375377 (1992).CrossRefGoogle Scholar
6. Arima, M., Nakayama, K., Akaishi, M., Yamaoka, S., and Kanda, H., Geology 21, 968 (1993).2.3.CO;2>CrossRefGoogle Scholar
7. Bovenkerk, H. P., Bundy, F. P., Hall, H. T., Strong, H. M., and Wentorf, R. H., Jr., Nature 184, 1094 (1959).CrossRefGoogle Scholar
8. Ragone, S. E., J. Phys. Chem. 70, 3361 (1966).CrossRefGoogle Scholar
9. Thomas, J. Jr.., Weston, N. E., and O'Conner, T. E., J. Am. Chem. Soc. 84, 4619 (1963).Google Scholar
10. Similar quality used in previous study1,3 (supplied by Dr. M. Akaishi).Google Scholar
11. Matthews, S. J., Jones, A. P., and Beard, A. D., Geological, J. Soc. London 151, 815 (1994).Google Scholar
12. Simons, B., J. Appl. Cryst. 16, 143 (1983).CrossRefGoogle Scholar
13. Walker, D., Carpenter, C. A., and Hitch, C. M., Am. Mineralogist 75, 1020 (1990).Google Scholar
14. Onodera, A., High Temp.–High Press. 19, 579 (1987).Google Scholar
15. Yagi, T., Akaogi, M., Shimomura, O., Suzuki, T., and Akimoto, S., J. Geophys. Res. 92 B7, 6207 (1987).CrossRefGoogle Scholar
16. Yagi, T. and Akimoto, S., Technophysics 35, 259 (1976).Google Scholar
17. Bery, G. P. and Kohler, T., J. Petrology 31, 1353 (1990).Google Scholar
18. Grady, M. M., Wright, I.P., Swart, P. K., and Pillinger, C. T., Geo. Cosmo. Acta 52, 2885 (1988).CrossRefGoogle Scholar
19. Katsura, T. and Ito, E., Earth and Planetary Sci. Lett. 99, 110 (1990).CrossRefGoogle Scholar
20. Jones, A. P. and Genge, M.G., Proc. of AGU 1994 Fall Meeting 75, 725 (1994).Google Scholar
21. Dobson, D. and Jones, A. P., unpublished work.Google Scholar
22. Jones, A. P., Dobson, D., Rabe, R., Kanzaki, M., Kondo, T., Kurita, K., Sekine, T., Shimomura, O., Taniguchi, T., and Urakawa, S., PF Activity Rept. 92-G289 437 (1993).Google Scholar
23. Janz, G. J., Molten Salts Handbook (Academic Press, New York, 1967), p. 20.Google Scholar
24. Kikegawa, T., Shimomura, O., Iwasaki, H., Sato, S., Mikuni, A., Iida, A., and Kamiya, N., Rev. Sci. Instrum. 60, 1527 (1989).CrossRefGoogle Scholar
25. Chapman, D. S. and Pollack, H. N., Geology 5, 265 (1977).2.0.CO;2>CrossRefGoogle Scholar
26. Bundy, F. P. and Kasper, J.S., J. Chem. Phys. 46, 3437 (1967).CrossRefGoogle Scholar
27. Yagi, T., Utsumi, W., Yamakata, A., Kikegawa, T., and Shimo-mura, O., Phys. Rev. B 46, 6031 (1992).CrossRefGoogle Scholar